A Unified Approach to Extremal Trees with Respect to Geometric–Arithmetic, Szeged and Edge Szeged Indices

نویسندگان

  • Hongbo Hua
  • Shenggui Zhang
چکیده

The second and third geometric-arithmetic indices GA2(G) and GA3(G) of a graph G are defined, respectively, as ∑ uv∈E(G) √ nu(e,G)nv(e,G) 1 2 [nu(e,G)+nv(e,G)] and ∑ uv∈E(G) √ mu(e,G)mv(e,G) 1 2 [mu(e,G)+mv(e,G)] , where e = uv is one edge in G, nu(e,G) denotes the number of vertices in G lying closer to u than to v andmu(e,G) denotes the number of edges in G lying closer to u than to v. The Szeged and edge Szeged indices are defined, respectively, as Sz(G) = ∑ uv∈E(G) nu(e,G) · nv(e,G) and Sze(G) = ∑ uv∈E(G) mu(e,G) · mv(e,G). In this paper, we provide a unified approach to characterize the tree with the minimum and maximum GA2, GA3, Sz and Sze indices among the set of trees with given order and pendent vertices, respectively. As applications, we deduce a result of [2] concerning tree with the maximum GA2 index and a result of [3] concerning tree with the maximum GA3 index. ∗Supported by NSFC (No. 10871158) and Qing Lan Project of Jiangsu Province, P.R. China. †E-mail: [email protected] (H. Hua), [email protected] (S. Zhang) MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 65 (2011) 691-704 ISSN 0340 6253

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-Szeged and vertex-PIindices of Some Benzenoid Systems

The edge version of Szeged index and vertex version of PI index are defined very recently. They are similar to edge-PI and vertex-Szeged indices, respectively. The different versions of Szeged and PIindices are the most important topological indices defined in Chemistry. In this paper, we compute the edge-Szeged and vertex-PIindices of some important classes of benzenoid systems.

متن کامل

ARITHMETIC-BASED FUZZY CONTROL

Fuzzy control is one of the most important parts of fuzzy theory for which several approaches exist. Mamdani uses $alpha$-cuts and builds the union of the membership functions which is called the aggregated consequence function. The resulting function is the starting point of the defuzzification process. In this article, we define a more natural way to calculate the aggregated consequence funct...

متن کامل

Relation Between Wiener, Szeged and Detour Indices

In theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. Among them Wiener, Szeged and detour indices play significant roles in anticipating chemical phenomena. In the present paper, we study these topological indices with respect to their difference number.

متن کامل

Some Graphs with Extremal Pi Index

The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index, which reflects certain structural features of organic molecules. In this paper, we study the maximum PI indices and the minimum PI indices for trees and unicyclic graphs respectively.

متن کامل

On the revised edge-Szeged index of graphs

The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011