Spatial variability in the degradation rate of isoproturon in soil.
نویسندگان
چکیده
Thirty samples of soil were taken at 50-m intersections on a grid pattern over an area of 250 x 200 m within a single field with nominally uniform soil characteristics. Incubations of isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) under standard conditions (15 degrees C; -33 kPa soil water potential) indicated considerable variation in degradation rate of the herbicide, with the time to 50% loss (DT50) varying from 6.5 to 30 days. The kinetics of degradation also varied between the sub-samples of soil. In many of them, there was an exponential decline in isoproturon residues; in others, exponential loss was followed by more rapid rates of decline; in a few soil samples, rapid rates of loss began shortly after the start of the incubations. In more detailed studies with soils from a smaller number of sub-sites (20), measurements were again made of isoproturon degradation rate, and the soils were analysed for organic matter content, pH, and nutrient status (N, P, K). Measurements were also made of isoproturon adsorption by the soils and of soil microbial biomass. Patterns of microbial metabolism were assessed using 95 substrates in Biolog GN plates. Soils showing rapid biodegradation were generally of higher pH and contained more available potassium than those showing slower degradation rates. They also had a larger microbial biomass and greater microbial metabolic diversity as determined by substrate utilisation on Biolog GN plates. The implications of the results for the efficacy and environmental behaviour of isoproturon are discussed.
منابع مشابه
In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH.
Substantial spatial variability in the degradation rate of the phenyl-urea herbicide isoproturon (IPU) [3-(4-isopropylphenyl)-1,1-dimethylurea] has been shown to occur within agricultural fields, with implications for the longevity of the compound in the soil, and its movement to ground- and surface water. The microbial mechanisms underlying such spatial variability in degradation rate were inv...
متن کاملUnderstanding the Causes of Spatial Variation in Pesticide Sorption and Degradation at the Catchment Scale
Intensive agricultural practices and use of pesticides, essential to achieve high crop yields, present particular risks to soil and water resources which sustain life. Degradation and sorption of pesticides in soils are both spatially variable and also among the most sensitive factors determining losses to surface water and groundwater. Currently, no general guidance is available on suitable ap...
متن کاملSpatial variability of some soil properties for site specific farming in northern Iran
Evaluating agricultural land management practices requires knowledge of soil spatial variability and understanding their relationships. Spatial distributions for fourteen soil physical and chemical properties were examined in a wheat field in Sorkhankalateh district, in Golestan province, Iran. 101 soil samples at the distances of 5m, 10m and 20m as nested grid were collected at the depth of 0-...
متن کاملCatchment-scale spatial variability analysis of soil hydro-physical properties in a semi-arid region of Iran
Soil hydrau-physical data are important for many hydrological modelings. They are the main variables controllingthe key processes such as water and chemicals movement and transport in the soil profiles. This study was conductedin order to analyze the spatial distribution of selected soil hydrau-physcial characteristics including infiltration rate(IR), saturated hydraulic conductivity (Ks), bulk...
متن کاملMicrobial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields.
Abstract The phenylurea herbicides are an important group of pesticides used extensively for pre- or post-emergence weed control in cotton, fruit and cereal crops worldwide. The detection of phenylurea herbicides and their metabolites in surface and ground waters has raised the awareness of the important role played by agricultural soils in determining water quality. The degradation of phenylur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental pollution
دوره 111 3 شماره
صفحات -
تاریخ انتشار 2001