Dirac spectra and edge states in honeycomb plasmonic lattices.
نویسندگان
چکیده
We study theoretically the dispersion of plasmonic honeycomb lattices and find Dirac spectra for both dipole and quadrupole modes. Zigzag edge states derived from Dirac points are found in ribbons of these honeycomb plasmonic lattices. The zigzag edge states for out-of-plane dipole modes are closely analogous to the electronic ones in graphene nanoribbons. The edge states for in-plane dipole modes and quadrupole modes, however, have rather unique characters due to the vector nature of the plasmonic excitations. The conditions for the existence of plasmonic edge states are derived analytically.
منابع مشابه
Topological aspects of graphene Dirac fermions and the bulk-edge correspondence in magnetic fields
We discuss topological aspects of electronic properties of graphene, including edge effects, with the tight-binding model on a honeycomb lattice and its extensions to show the following: (i) Appearance of the pair of massless Dirac dispersions, which is the origin of anomalous properties including a peculiar quantum Hall effect (QHE), is not accidental to honeycomb, but is rather generic for a ...
متن کاملDirac-like plasmons in honeycomb lattices of metallic nanoparticles.
We consider a two-dimensional honeycomb lattice of metallic nanoparticles, each supporting a localized surface plasmon, and study the quantum properties of the collective plasmons resulting from the near-field dipolar interaction between the nanoparticles. We analytically investigate the dispersion, the effective Hamiltonian, and the eigenstates of the collective plasmons for an arbitrary orien...
متن کاملRoom Temperature Quantum Spin Hall Insulator in Ethynyl-Derivative Functionalized Stanene Films
Quantum spin Hall (QSH) insulators feature edge states that topologically protected from backscattering. However, the major obstacles to application for QSH effect are the lack of suitable QSH insulators with a large bulk gap. Based on first-principles calculations, we predict a class of large-gap QSH insulators in ethynyl-derivative functionalized stanene (SnC2X; X = H, F, Cl, Br, I), allowing...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملTwo-dimensional Topological Crystalline Insulator Phase in Sb/Bi Planar Honeycomb with Tunable Dirac Gap
We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 102 12 شماره
صفحات -
تاریخ انتشار 2009