A Blind Adaptive Kalman-PIC MUD Algorithm for the Multiple Access Communication Network

نویسندگان

  • Weiting Gao
  • Hui Li
چکیده

In the parallel signal processing, the multi-user detection precision of parallel interference cancellation (PIC) detector is always easily affected by the decision error diffusion. Based on the fast convergence and low complexity of blind adaptive Kalman algorithm, a new blind adaptive Kalman-PIC (KPIC) multi-user detection (MUD) algorithm is proposed for the direct sequence spread spectrum code division multiple access (DS-CDMA) system network with strong multiple access interference (MAI). Compared with traditional standard Kalman filter and PIC algorithm, the proposed combined program can totally track the timevarying channel, effectively estimate unknown noise statistics characteristics on-line while conducting state filtering, possibly minimize the detection error diffusion in the interference cancellation processing of single PIC algorithm, thus effectively suppress MAI. Simulation results show that the KPIC algorithm is of better convergence, dynamic tracking ability and precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Blind Adaptive Kalman-SIC MUD Algorithm of the Wireless Multiple Access Mobile Communication System

The multi-user detection precision of successive interference cancellation (SIC) detector is always affected by the decision error diffusion. This paper focuses on the SIC algorithm of direct sequence spread spectrum code division multiple access (DS-CDMA) system with strong multiple access interference (MAI) and inter symbol interference (ISI). A blind adaptive Kalman-SIC multi-user detection ...

متن کامل

A Blind Adaptive SOR/JGS Iterative Kalman MUD Algorithm for Multiple Access Communication System

Based on the fast stable convergence characteristics of successive over relaxation (SOR) iterative and Jacobi GaussSeidel (JGS) iterative, a blind adaptive SOR/JGS iterative Kalman multi-user detection (MUD) algorithm (SJK) is proposed for multiple access communication system as direct sequence spread spectrum code division multiple access (DSCDMA) system with multi-path fading channel. The pro...

متن کامل

The Kalman Filtering Blind Adaptive Multi-user Detector Based on Tracking Algorithm of Signal Subspace

Multi-user detection is an effective method to reduce multiple access interference in code division multiple access (CDMA) systems. This paper discusses a signal subspace based blind adaptive multiuser detector and a Kalman filtering blind adaptive multiuser detector. Combining them together, a new Kalman filtering blind adaptive multiuser detector based on a tracking algorithm of the signal su...

متن کامل

Advanced blind adaptive multi-user detector for communications in nonstationary multipath fading channel

This paper deals with an adaptive multi-user detector for direct sequence code division multiple access (DS/CDMA) wireless communication systems, named advanced blind adaptive multi-user detector (ABA-MUD), whose main features are low complexity and joint utilization of time diversity and adaptive blind processing techniques. Differently from known blind adaptive detectors, the proposed scheme ...

متن کامل

Semi-blind Multiuser Detection Based on Improved Pastd Subspace Tracking for Mc-cdma Uplink

In this paper, an adaptive semi-blind multiuser detection (MUD) algorithm based on improved projecting approximation subspace tracking with deflation (PASTd) subspace tracking is proposed for multicarrier code division multiple access (MC-CDMA) uplink where the base station receiver has the knowledge of the spreading sequences of all the users within the cell, but not that of the users from oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014