The type Ialpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane.

نویسندگان

  • Ivan Ivetac
  • Adam D Munday
  • Marina V Kisseleva
  • Xiang-Ming Zhang
  • Susan Luff
  • Tony Tiganis
  • James C Whisstock
  • Tony Rowe
  • Phillip W Majerus
  • Christina A Mitchell
چکیده

Endosomal trafficking is regulated by the recruitment of effector proteins to phosphatidylinositol 3-phosphate [PtdIns(3)P] on early endosomes. At the plasma membrane, phosphatidylinositol-(3,4)-bisphosphate [PtdIns(3,4)P2] binds the pleckstrin homology (PH) domain-containing proteins Akt and TAPP1. Type Ialpha inositol polyphosphate 4-phosphatase (4-phosphatase) dephosphorylates PtdIns(3,4)P2, forming PtdIns(3)P, but its subcellular localization is unknown. We report here in quiescent cells, the 4-phosphatase colocalized with early and recycling endosomes. On growth factor stimulation, 4-phosphatase endosomal localization persisted, but in addition the 4-phosphatase localized at the plasma membrane. Overexpression of the 4-phosphatase in serum-stimulated cells increased cellular PtdIns(3)P levels and prevented wortmannin-induced endosomal dilatation. Furthermore, mouse embryonic fibroblasts from homozygous Weeble mice, which have a mutation in the type I 4-phosphatase, exhibited dilated early endosomes. 4-Phosphatase translocation to the plasma membrane upon growth factor stimulation inhibited the recruitment of the TAPP1 PH domain. The 4-phosphatase contains C2 domains, which bound PtdIns(3,4)P2, and C2-domain-deletion mutants lost PtdIns(3,4)P2 4-phosphatase activity, did not localize to endosomes or inhibit TAPP1 PH domain membrane recruitment. The 4-phosphatase therefore both generates and terminates phosphoinositide 3-kinase signals at distinct subcellular locations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases

Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by p...

متن کامل

The inositol polyphosphate 5-phosphatase, PIPP, Is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation.

The spatial activation of phosphoinositide 3-kinase (PI3-kinase) signaling at the axon growth cone generates phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3), which localizes and facilitates Akt activation and stimulates GSK-3beta inactivation, promoting microtubule polymerization and axon elongation. However, the molecular mechanisms that govern the spatial down-regulation of PtdIns(...

متن کامل

The Inositol 5-Phosphatase dOCRL Controls PI(4,5)P2 Homeostasis and Is Necessary for Cytokinesis

During cytokinesis, constriction of an equatorial actomyosin ring physically separates the two daughter cells. At the cleavage furrow, the phosphoinositide PI(4,5)P2 plays an important role by recruiting and regulating essential proteins of the cytokinesis machinery [1]. Accordingly, perturbation of PI(4,5)P2 regulation leads to abortive furrowing and binucleation [2-4]. To determine how PI(4,5...

متن کامل

Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway

The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins,...

متن کامل

The PH domain proteins IPIP27A and B link OCRL1 to receptor recycling in the endocytic pathway

Mutation of the inositol polyphosphate 5-phosphatase OCRL1 results in two disorders in humans, namely Lowe syndrome (characterized by ocular, nervous system, and renal defects) and type 2 Dent disease (in which only the renal symptoms are evident). The disease mechanisms of these syndromes are poorly understood. Here we identify two novel OCRL1-binding proteins, termed inositol polyphosphate ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2005