Unimodal Polynomials Arising from Symmetric Functions
نویسندگان
چکیده
We present a general result that, using the theory of symmetric functions, produces several new classes of symmetric unimodal polynomials. The result has applications to enumerative combinatorics including the proof of a conjecture by R. Stanley.
منابع مشابه
Buckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...
متن کاملHigher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملA Combinatorial Generalization of the Boson-fermion Correspondence
This article is an attempt to understand the ubiquity of tableaux and of Pieri and Cauchy formulae for combinatorially defined families of symmetric functions. We show that such formulae are to be expected from symmetric functions arising from representations of Heisenberg algebras. The resulting framework that we describe is a generalization of the classical Boson-Fermion correspondence, from ...
متن کاملCoefficient Estimates for a General Subclass of m-fold Symmetric Bi-univalent Functions by Using Faber Polynomials
In the present paper, we introduce a new subclass H∑m (λ,β)of the m-fold symmetric bi-univalent functions. Also, we find the estimates of the Taylor-Maclaurin initial coefficients |am+1| , |a2m+1| and general coefficients |amk+1| (k ≥ 2) for functions in this new subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.
متن کاملOn a Sequence of Unimodal Polynomials Arising from a Family of Definite Integrals
The purpose of this paper is to establish the unimodality and to determine the mode of a class of Jacobi polynomials which arises in the exact integration of certain rational functions as well as in the Taylor expansion of the double square rot. Journal of Math. Anal. Appl. 237, 272-287, 1999.
متن کامل