Investigation of inner and outer phase formation in tube radial distribution phenomenon using various types of mixed solvent solutions.
نویسندگان
چکیده
When mixed solvent solutions, such as ternary water-hydrophilic/hydrophobic organic solvents, water-surfactant, water-ionic liquid, and fluorous-organic solvents are delivered into a microspace under laminar flow conditions, the solvent molecules are radially distributed in the microspace, generating inner and outer phases. This specific fluidic behavior is termed "tube radial distribution phenomenon" (TRDP). In this study, the factors influencing the formation of inner and outer phases in the TRDP using the above-mentioned mixed solvent solutions were investigated. We examined phase diagrams, viscosities of the two phases (upper and lower phases in a batch vessel), volume ratios of the phases, and bright-light or fluorescence photographs of the TRDP. When the difference in viscosities between the two phases was large (> approximately 0.73 mPa·s), the phase with the larger viscosity formed an inner phase regardless of the volume ratios, whereas when the difference was small (< approximately 0.42 mPa·s), the phase with the larger volume formed an inner phase. The TRDP using a water-surfactant mixed solution was also investigated in capillary chromatography based on TRDP.
منابع مشابه
Fundamental research and application of the specific fluidic behavior of mixed solvents in a microspace.
The author herein reviews a specific microfluidic behavior exhibited by mixed-solvent solutions in a microspace, coined as the tube radial distribution phenomenon (TRDP). The specific fluidic behavior was observed in the following solution systems: ternary water-hydrophilic/hydrophobic organic solvents, water-surfactant, water-ionic liquid, and fluorous/organic solvents. When the mixed homogene...
متن کاملTube radial distribution phenomenon of ternary mixed solvents in a microspace under laminar flow conditions.
When ternary mixed solutions of water-hydrophilic/hydrophobic organic solvents are fed into a microspace under laminar flow conditions, the solvent molecules are radially distributed in the microspace. The specific fluidic behavior of the solvents is termed "tube radial distribution phenomenon" (TRDP). In this study, water-acetonitrile-ethyl acetate mixed solutions (3:8:4 volume ratio) containi...
متن کاملTube radial distribution phenomenon with a two-phase separation solution of a fluorocarbon and hydrocarbon organic solvent mixture in a capillary tube and metal compounds separation.
A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was...
متن کاملExperimental Investigation of Sinusoidal Tube in Triplex-Tube Heat Exchanger during Charging and Discharging Processes Using Phase Change Materials
In this experiment effect of two full and half width sinusoidal inner tubes in triplex-tube heat exchanger with phase change material (PCM) was investigated. Length and diameter of the tubes have been chosen such that the area of each tube to be the same. Charging and discharging processes were carried out by inner tube, outer tube and both. Results indicated, PCM melting and solidification tim...
متن کاملInvestigations into tie lines and solubility curves on phase diagrams in open-tubular capillary chromatography using ternary mixed-carrier solvents.
Open-tubular capillary chromatography using a ternary solvent mixture consisting of a water-hydrophilic-hydrophobic organic solvent as a carrier solution has been developed. When the ternary carrier solution is fed into the capillary tube, the carrier solvents are radially distributed and generate inner and outer phases in the tube. The outer phase functions as a pseudo-stationary phase in ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
دوره 30 10 شماره
صفحات -
تاریخ انتشار 2014