In vivo role of alternative splicing and serine phosphorylation of the microphthalmia-associated transcription factor.
نویسندگان
چکیده
The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper protein that plays major roles in the development and physiology of vertebrate melanocytes and melanoma cells. It is regulated by post-translational modifications, including phosphorylation at serine 73, which based on in vitro experiments imparts on MITF an increased transcriptional activity paired with a decreased stability. Serine 73 is encoded by the alternatively spliced exon 2B, which is preferentially skipped in mice carrying a targeted serine-73-to-alanine mutation. Here, we measured the relative abundance of exon 2B+ and exon 2B- RNAs in freshly isolated and FACS-sorted wild-type melanoblasts and melanocytes and generated a series of knock-in mice allowing forced incorporation of either alanine, aspartate, or wild-type serine at position 73. None of these knock-in alleles, however, creates a striking pigmentation phenotype on its own, but differences between them can be revealed either by a general reduction of Mitf transcript levels or in heteroallelic combinations with extant Mitf mutations. In fact, compared with straight serine-73 knock-in mice with their relative reduction of 2B+ Mitf, forced incorporation of alanine 73 leads to greater increases in MITF protein levels, melanoblast and melanocyte numbers, and extent of pigmentation in particular allelic combinations. These results underscore, in vivo, the importance of the link between alternative splicing and post-translational modifications and may bear on the recent observation that exon 2B skipping can be found in metastatic melanoma.
منابع مشابه
In vivo role of alternative splicing and serine phosphorylation of the microphthalmia-associated transcription factor MITF
*Mammalian Development Section, NINDS, NIH, Bethesda, MD 20892-3706, USA §Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA **Genetics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA §§NINDS Flow Cytometry Core Facility, NIH, Bethesda, MD 20892, USA Transgenic Core Facility, National Institute of Mental Health, National Institutes...
متن کاملEvaluation of antioxidant and anti-melanogenic activities of different extracts from aerial parts of Nepeta binaludensis Jamzad in murine melanoma B16F10 cells
Objective(s): Nepeta binaludensis Jamzad (Lamiaceae) has been used in folk medicine of Iran to cure various diseases. The plant is an endemic species to the country that has recently been identified in Razavi Khorasan province. To evaluate the antioxidant and anti-melanogenesis of N. binaludensis, in this study the inhibitory activity of different extracts of N. binaludensis in murine melanoma ...
متن کاملThe Role of MITF Phosphorylation Sites During Coat Color and Eye Development in Mice Analyzed by BAC Transgene Rescue
The microphthalmia-associated transcription factor (Mitf) has emerged as an important model for gene regulation in eukaryotic organisms. In vertebrates, it regulates the development of several cell types including melanocytes and has also been shown to play an important role in melanoma. In vitro, the activity of MITF is regulated by multiple signaling pathways, including the KITL/KIT/B-Raf pat...
متن کاملThe role of MITF phosphorylation sites during coat color and eye development in mice analyzed by bacterial artificial chromosome transgene rescue.
The microphthalmia-associated transcription factor (Mitf) has emerged as an important model for gene regulation in eukaryotic organisms. In vertebrates, it regulates the development of several cell types including melanocytes and has also been shown to play an important role in melanoma. In vitro, the activity of MITF is regulated by multiple signaling pathways, including the KITL/KIT/B-Raf pat...
متن کاملIn vitro Interaction and Colocalization of HSV-1 ORF P with a Cellular Splicing Factor (SC35) Using Pulldown Assay
Herpes simplex virus type-1 (HSV-1) causes a variety of diseases in human. This virus is a neurotropic pathogen of human that establishes latent infection in the sensory ganglia innervating the site of primary infection. A number of genes including ICP34.5 control HSV-1 pathogenicity and ICP34.5 has been identified as HSV-1 virulence gene. Open reading frame P (ORF P) is also a HSV-1 gene that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 191 1 شماره
صفحات -
تاریخ انتشار 2012