drr-2 encodes an eIF4H that acts downstream of TOR in diet-restriction-induced longevity of C. elegans.

نویسندگان

  • Tsui-Ting Ching
  • Alisha B Paal
  • Avni Mehta
  • Linda Zhong
  • Ao-Lin Hsu
چکیده

Dietary restriction (DR) results in a robust increase in lifespan while maintaining the physiology of much younger animals in a wide range of species. Here, we examine the role of drr-2, a DR-responsive gene recently identified, in determining the longevity of Caenorhabditis elegans. Inhibition of drr-2 has been shown to increase longevity. However, the molecular mechanisms by which drr-2 influences longevity remain unknown. We report here that drr-2 encodes an ortholog of human eukaryotic translation initiation factor 4H (eIF4H), whose function is to mediate the initiation step of mRNA translation. The molecular function of DRR-2 is validated by the association of DRR-2 with polysomes and by the decreased rate of protein synthesis observed in drr-2 knockdown animals. Previous studies have also suggested that DR might trigger a regulated reduction in drr-2 expression to initiate its longevity response. By examining the effect of increasing drr-2 expression on DR animals, we find that drr-2 is essential for a large portion of the longevity response to DR. The nutrient-sensing target of rapamycin (TOR) pathway has been shown to mediate the longevity effects of DR in C. elegans. Results from our genetic analyses suggest that eIF4H/DRR-2 functions downstream of TOR, but in parallel to the S6K/PHA-4 pathway to mediate the lifespan effects of DR. Together, our findings reveal an important role for eIF4H/drr-2 in the TOR-mediated longevity responses to DR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The general control nonderepressible-2 kinase mediates stress response and longevity induced by target of rapamycin inactivation in Caenorhabditis elegans

The general control nonderepressible 2 (GCN2) kinase is a nutrient-sensing pathway that responds to amino acids deficiency and induces a genetic program to effectively maintain cellular homeostasis. Here we established the conserved role of Caenorhabditis elegans GCN-2 under amino acid limitation as a translation initiation factor 2 (eIF2) kinase. Using a combination of genetic and molecular ap...

متن کامل

10-Hydroxy-2-decenoic Acid, the Major Lipid Component of Royal Jelly, Extends the Lifespan of Caenorhabditis elegans through Dietary Restriction and Target of Rapamycin Signaling

Royal jelly (RJ) produced by honeybees has been reported to possess diverse health-beneficial properties and has been implicated to have a function in longevity across diverse species as well as honeybees. 10-Hydroxy-2-decenoic acid (10-HDA), the major lipid component of RJ produced by honeybees, was previously shown to increase the lifespan of Caenorhabditis elegans. The objective of this stud...

متن کامل

A Role for Autophagy in the Extension of Lifespan by Dietary Restriction in C. elegans

In many organisms, dietary restriction appears to extend lifespan, at least in part, by down-regulating the nutrient-sensor TOR (Target Of Rapamycin). TOR inhibition elicits autophagy, the large-scale recycling of cytoplasmic macromolecules and organelles. In this study, we asked whether autophagy might contribute to the lifespan extension induced by dietary restriction in C. elegans. We find t...

متن کامل

The Target of Rapamycin Pathway Antagonizes pha-4/FoxA to Control Development and Aging

BACKGROUND FoxA factors are critical regulators of embryonic development and postembryonic life, but little is know about the upstream pathways that modulate their activity. C. elegans pha-4 encodes a FoxA transcription factor that is required to establish the foregut in embryos and to control growth and longevity after birth. We previously identified the AAA+ ATPase homolog ruvb-1 as a potent ...

متن کامل

S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells.

Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Aging cell

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 2010