Noncontact friction via capillary shear interaction at nanoscale

نویسندگان

  • Manhee Lee
  • Bongsu Kim
  • Jongwoo Kim
  • Wonho Jhe
چکیده

Friction in an ambient condition involves highly nonlinear interactions of capillary force, induced by the capillary-condensed water nanobridges between contact or noncontact asperities of two sliding surfaces. Since the real contact area of sliding solids is much smaller than the apparent contact area, the nanobridges formed on the distant asperities can contribute significantly to the overall friction. Therefore, it is essential to understand how the water nanobridges mediate the 'noncontact' friction, which helps narrow the gap between our knowledge of friction on the microscopic and macroscopic scales. Here we show, by using noncontact dynamic force spectroscopy, the single capillary bridge generates noncontact friction via its shear interaction. The pinning-depinning dynamics of the nanobridge's contact line produces nonviscous damping, which occurs even without normal load and dominates the capillary-induced hydrodynamic damping. The novel nanofriction mechanism may provide a deeper microscopic view of macroscopic friction in air where numerous asperities exist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling nanoscale friction through the competition between capillary adsorption and thermally activated sliding.

We demonstrate measurement and control of nanoscale single-asperity friction by using cantilever probes featuring an in situ solid-state heater in contact with silicon oxide substrates. The heater temperature was varied between 25 and 790 °C. By using a low thermal conductivity sample, silicon oxide, we are able to vary tip temperatures over a broad range from 25 ± 2 to 255 ± 25 °C. In ambient ...

متن کامل

Use of nanoscale zero-valent iron to improve the shear strength parameters of gas oil contaminated clay

In recent years, the nanoscale zero-valent iron (NZVI) particles have been used successfully for the degradation of hydrocarboncompounds and remediation of other pollutants. Nevertheless, as far as we know, there is no specific study on the improvement of thegeotechnical properties of contaminated soils with hydrocarbon compounds by NZVI. This study used NZVI particles to remove gasoil in a cla...

متن کامل

Local nanoscale heating modulates single-asperity friction.

We demonstrate measurement and control of single-asperity friction by using cantilever probes featuring an in situ solid-state heater. The heater temperature was varied between 25 and 650 °C (tip temperatures from 25 ± 2 to 120 ± 20 °C). Heating caused friction to increase by a factor of 4 in air at ∼ 30% relative humidity, but in dry nitrogen friction decreased by ∼ 40%. Higher velocity reduce...

متن کامل

Probing nonlinear rheology layer-by-layer in interfacial hydration water.

Viscoelastic fluids exhibit rheological nonlinearity at a high shear rate. Although typical nonlinear effects, shear thinning and shear thickening, have been usually understood by variation of intrinsic quantities such as viscosity, one still requires a better understanding of the microscopic origins, currently under debate, especially on the shear-thickening mechanism. We present accurate meas...

متن کامل

Roughness picture of friction in dry nanoscale contacts

Large-scale molecular-dynamics simulations are performed to study friction in nanoscale single asperity contacts. The modeling system consists of a tip made of H-terminated diamond-like carbon and an H-terminated diamond sample. Simulations are carried out using a reactive bond-order interatomic potential integrated with dispersive interactions. A quantitative agreement in contact pressures and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015