Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials
نویسندگان
چکیده
The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity.
منابع مشابه
Architecture Students’ Understanding of Landscape Issues in Design Studios (A Comparison Approach in Some Tehran Architecture Schools)
Without the surrounding environment of a site, architecture loses its full meaning. In the evolutionof the design process, a site's environment should be understood as the integral factor within which a designed productor artifact is expected to perform. The environment is not of secondary priority. Every building is intertwined with itscontext; context being its physical, visual and ecological...
متن کاملUntargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites
Epidemiological research has demonstrated that the consumption of red meat is an important risk factor for the development of colorectal cancer (CRC), diabetes mellitus and cardiovascular diseases. However, there is no holistic insight in the (by-) products of meat digestion that may contribute to disease development. To address this hiatus, an untargeted mass spectrometry (MS)-based metabolomi...
متن کاملAutomated LC-HRMS(/MS) Approach for the Annotation of Fragment Ions Derived from Stable Isotope Labeling-Assisted Untargeted Metabolomics
Structure elucidation of biological compounds is still a major bottleneck of untargeted LC-HRMS approaches in metabolomics research. The aim of the present study was to combine stable isotope labeling and tandem mass spectrometry for the automated interpretation of the elemental composition of fragment ions and thereby facilitate the structural characterization of metabolites. The software tool...
متن کاملNanostructure-initiator mass spectrometry metabolite analysis and imaging.
Nanostructure-Initiator Mass Spectrometry (NIMS) is a matrix-free desorption/ionization approach that is particularly well-suited for unbiased (untargeted) metabolomics. An overview of the NIMS technology and its application in the detection of biofluid and tissue metabolites are presented. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs...
متن کاملCombining Statistical Tools and Ecological Assessments in the Study of Biodeterioration Patterns of Stone Temples in Angkor (Cambodia)
Biodeterioration is a major problem for the conservation of cultural heritage materials. We provide a new and original approach to analyzing changes in patterns of colonization (Biodeterioration patterns, BPs) by biological agents responsible for the deterioration of outdoor stone materials. Here we analyzed BPs of four Khmer temples in Angkor (Cambodia) exposed to variable environmental condit...
متن کامل