Range-based Parameter Estimation in Diffusion Models
نویسندگان
چکیده
We study the behavior of the maximum, the minimum and the terminal value of time–homogeneous one–dimensional diffusions on finite time intervals. To begin with, we prove an existence result for the joint density by means of Malliavin calculus. Moreover, we derive expansions for the joint moments of the triplet (H,L,X) at time Delta w.r.t. Delta. Here, X stands for the underlying diffusion whereas H and L denote its running maximum and its running minimum, respectively. In a first approach that entirely relies on elementary estimates, such as Doob’s inequality and Cauchy–Schwarz’ inequality, we derive an expansion w.r.t. the square root of the time parameter Delta including powers of 2. A more sophisticated ansatz uses partial differential equation techniques to determine an expansion of the one–barrier hitting time probability for pinned diffusions. For an expansion of the transition density of diffusions is known, one obtains an overall expansion of the joint probability of (H,X) w.r.t. Delta. The developed distributional properties enable us to establish a theory for martingale estimating functions constructed from range–based data in a parameterized diffusion model. A small–Delta–optimality approach, that uses the approximated moments, yields a simplification of the relatively complicated estimating procedure and we obtain asymptotic optimality results when the sampling frequency Delta tends to 0. When it comes to estimating the drift coefficient the range–based method is not superior to the method relying on equidistant observations of the underlying diffusion alone. However, there is an enormous gain in efficiency at the estimation for the diffusion coefficient. Incorporating the maximum and the minimum into the analysis significantly lowers the asymptotic variance of the estimators for the parameter in this scenario.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملParameter Estimation of Fractional Models : Application to the Modeling of Diffusive Systems
Black box modeling of diffusion processes can be performed by fractional models. The simulation of these particular models is based on a new fractional integrator, with limited spectral range. Parameter estimation of this class of systems is performed by an OE identification technique. This paper presents the application of this new methodology to the modeling of different diffusive systems dea...
متن کاملEstimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network
In this study, the use of the three-layer feed forward neural network has been investigated for estimating of infinite dilute diffusion coefficient ( D12 ) of supercritical fluid (SCF), liquid and gas binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, critical pressure, critical volume, normal boiling point, molecular volume in normal boilin...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملParameter estimation of diffusion models ∗
Parameter estimation problems of diffusion models are discussed. The problems of maximum likelihood estimation and model selections from continuous observations are illustrated through diffusion growth model which generalizes some classical ones.
متن کاملGeneralized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کامل