Polygonal Boundary Evaluation of Minkowski Sums and Swept Volumes

نویسندگان

  • Marcel Campen
  • Leif Kobbelt
چکیده

We present a novel technique for the efficient boundary evaluation of sweep operations applied to objects in polygonal boundary representation. These sweep operations include Minkowski addition, offsetting, and sweeping along a discrete rigid motion trajectory. Many previous methods focus on the construction of a polygonal superset (containing self-intersections and spurious internal geometry) of the boundary of the volumes which are swept. Only few are able to determine a clean representation of the actual boundary, most of them in a discrete volumetric setting. We unify such superset constructions into a succinct common formulation and present a technique for the robust extraction of a polygonal mesh representing the outer boundary, i.e. it makes no general position assumptions and always yields a manifold, watertight mesh. It is exact for Minkowski sums and approximates swept volumes polygonally. By using plane-based geometry in conjunction with hierarchical arrangement computations we avoid the necessity of arbitrary precision arithmetics and extensive special case handling. By restricting operations to regions containing pieces of the boundary, we significantly enhance the performance of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Critical Values: a General Framework for Silhouettes Computation

Many shapes resulting from important geometric operations in industrial applications such as Minkowski sums or volume swept by a moving object can be seen as the projection of higher dimensional objects. When such a higher dimensional object is a smooth manifold, the boundary of the projected shape can be computed from the critical points of the projection. In this paper, using the notion of po...

متن کامل

Continuous penetration depth computation for rigid models using dynamic Minkowski sums

We present a novel, real-time algorithm for computing the continuous penetration depth (CPD) between two interpenetrating rigid models bounded by triangle meshes. Our algorithm guarantees gradient continuity for the penetration depth (PD) results, unlike conventional penetration depth (PD) algorithms that may have directional discontinuity due to the Euclidean projection operator involved with ...

متن کامل

Polygonal Minkowski Sums via Convolution : Theory and Practice

This thesis studies theoretical and practical aspects of the computation of planar polygonal Minkowski sums via convolution methods. In particular we prove the “Convolution Theorem”, which is fundamental to convolution based methods, for the case of simple polygons. To the best of our knowledge this is the first complete proof for this case. Moreover, we describe a complete, exact and efficient...

متن کامل

Volume difference inequalities for the projection and intersection bodies

In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.

متن کامل

Computing swept volumes

The swept volume problem is practical, dif®cult and interesting enough to have received a great deal of attention over the years, and the literature contains much discussion of methods for computing swept volumes in many situations. The method presented here permits an arbitrary polyhedral object (given in a typical boundary representation) to be swept through an arbitrary trajectory. A polyhed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2010