Efficacy of Ethanol Extract of Fructus lycii and Its Constituents Lutein/Zeaxanthin in Protecting Retinal Pigment Epithelium Cells against Oxidative Stress: In Vivo and In Vitro Models of Age-Related Macular Degeneration
نویسندگان
چکیده
Age-related macular degeneration (AMD) is a major cause of blindness worldwide. Oxidative stress plays a large role in the pathogenesis of AMD. The present study was to evaluate the effects of Fructus lycii ethanol extract on AMD in mice and to investigate whether combination of lutein and zeaxanthin, two carotenoid pigments in Fructus lycii, could protect human retinal pigment epithelial ARPE-19 cells treated with hydrogen peroxide (H2O2) in vitro. We found that severe sediment beneath retinal pigment epithelium and thickened Bruch membrane occurred in AMD mice. However, Fructus lycii ethanol extract improved the histopathologic changes and decreased the thickness of Bruch membrane. Furthermore, the gene and protein expression of cathepsin B and cystatin C was upregulated in AMD mice but was eliminated by Fructus lycii ethanol extract. Investigations in vitro showed that ARPE-19 cell proliferation was suppressed by H2O2. However, lutein/zeaxanthin not only stimulated cell proliferation but also abrogated the enhanced expression of MMP-2 and TIMP-1 in H2O2-treated ARPE-19 cells. These data collectively suggested that Fructus lycii ethanol extract and its active components lutein/zeaxanthin had protective effects on AMD in vivo and in vitro, providing novel insights into the beneficial role of Fructus lycii for AMD therapy.
منابع مشابه
Management of Ocular Diseases Using Lutein and Zeaxanthin: What Have We Learned from Experimental Animal Studies?
Zeaxanthin and lutein are two carotenoid pigments that concentrated in the retina, especially in the macula. The effects of lutein and zeaxanthin on the prevention and treatment of various eye diseases, including age-related macular degeneration, diabetic retinopathy and cataract, ischemic/hypoxia induced retinopathy, light damage of the retina, retinitis pigmentosa, retinal detachment, and uve...
متن کامل[Prevention and treatment of age-related macular degeneration by extract of Fructus lycii and its constituents lutein/zeaxanthin: an in vive and in vitro experimental research].
OBJECTIVE To investigate the in vivo inhibition of extract of Fructus lycii (FL) on the expressions of cathepsin B (Cat B) and cystatin C (Cys C) in high-fat diet and hydroquinone (HQ) induced model mice with age-related macular degeneration (AMD), and to explore the in vitro effects of lutein and zeaxanthin on hydrogen peroxide (H2O2,) induced expressions of matrix metalloproteinase 2 (MMP-2) ...
متن کاملMacular pigment in retinal health and disease
Lutein and zeaxanthin, two carotenoid pigments of the xanthophyll subclass, are present in high concentrations in the retina, especially in the macula. They work as a filter protecting the macula from blue light and also as a resident antioxidant and free radical scavenger to reduce oxidative stress-induced damage. Many observational and interventional studies have suggested that lutein and zea...
متن کاملMechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins.
The xanthophylls, lutein and zeaxanthin, are dietary carotenoids that selectively accumulate in the macula of the eye providing protection against age-related macular degeneration. To reach the macula, carotenoids cross the retinal pigment epithelium (RPE). Xanthophylls and β-carotene mostly associate with HDL and LDL, respectively. HDL binds to cells via a scavenger receptor class B1 (SR-B1)-d...
متن کاملOxidative stress in ocular disease: does lutein play a protective role?
A age-related macular degeneration and cataracts are leading causes of blindness, how they themselves are caused is unclear. These diseases are thought to result from damage caused, photochemically and nonphotochemically, to various cell types in the eye by oxidative stress. Because its protective fibre cells do not renew themselves, the lens is the ocular structure most susceptible to oxidativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013