Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads

نویسندگان

  • Zhiyong Zhu
  • Ana Sierra
  • Colin M.-L. Burnett
  • Biyi Chen
  • Ekaterina Subbotina
  • Siva Rama Krishna Koganti
  • Zhan Gao
  • Yuejin Wu
  • Mark E. Anderson
  • Long-Sheng Song
  • David J. Goldhamer
  • William A. Coetzee
  • Denice M. Hodgson-Zingman
  • Leonid V. Zingman
چکیده

ATP-sensitive potassium (KATP) channels have the unique ability to adjust membrane excitability and functions in accordance with the metabolic status of the cell. Skeletal muscles are primary sites of activity-related energy consumption and have KATP channels expressed in very high density. Previously, we demonstrated that transgenic mice with skeletal muscle-specific disruption of KATP channel function consume more energy than wild-type littermates. However, how KATP channel activation modulates skeletal muscle resting and action potentials under physiological conditions, particularly low-intensity workloads, and how this can be translated to muscle energy expenditure are yet to be determined. Here, we developed a technique that allows evaluation of skeletal muscle excitability in situ, with minimal disruption of the physiological environment. Isometric twitching of the tibialis anterior muscle at 1 Hz was used as a model of low-intensity physical activity in mice with normal and genetically disrupted KATP channel function. This workload was sufficient to induce KATP channel opening, resulting in membrane hyperpolarization as well as reduction in action potential overshoot and duration. Loss of KATP channel function resulted in increased calcium release and aggravated activity-induced heat production. Thus, this study identifies low-intensity workload as a trigger for opening skeletal muscle KATP channels and establishes that this coupling is important for regulation of myocyte function and thermogenesis. These mechanisms may provide a foundation for novel strategies to combat metabolic derangements when energy conservation or dissipation is required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men

High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...

متن کامل

Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice.

BACKGROUND We recently demonstrated that the sarcolemmal ATP-sensitive potassium (sarcK(ATP)) channel plays a key role in cardioprotection against ischemia/reperfusion injuries in Kir6.2-knockout (KO) mice. In the present study, we evaluated the effects of diazoxide, a mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel opener, on ischemia-induced myocardial stunning in sarcK(ATP) channe...

متن کامل

The biophysical and pharmacological characteristics of skeletal muscle ATP-sensitive K+ channels are modified in K+-depleted rat, an animal model of hypokalemic periodic paralysis.

We evaluated the involvement of the sarcolemmal ATP-sensitive K+ channel in the depolarization of skeletal muscle fibers occurring in an animal model of human hypokalemic periodic paralysis, the K+-depleted rat. After 23-36 days of treatment with a K+-free diet, an hypokalemia was observed in the rats. No difference in the fasting insulinemia and glycemia was found between normokalemic and hypo...

متن کامل

Pharmacological plasticity of cardiac ATP-sensitive potassium channels toward diazoxide revealed by ADP.

The pharmacological phenotype of ATP-sensitive potassium (K(ATP)) channels is defined by their tissue-specific regulatory subunit, the sulfonylurea receptor (SUR), which associates with the pore-forming channel core, Kir6.2. The potassium channel opener diazoxide has hyperglycemic and hypotensive properties that stem from its ability to open K(ATP) channels in pancreas and smooth muscle. Diazox...

متن کامل

Early opening of sarcolemmal ATP-sensitive potassium channels is not a key step in PKC-mediated cardioprotection.

ATP-sensitive potassium (KATP) channels are abundantly expressed in the myocardium. Although a definitive role for the channel remains elusive they have been implicated in the phenomenon of cardioprotection, but the precise mechanism is unclear. We set out to test the hypothesis that the channel protects by opening early during ischemia to shorten action potential duration and reduce electrical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 143  شماره 

صفحات  -

تاریخ انتشار 2014