Estimating micro area behavioural risk factor prevalence from large population-based surveys: a full Bayesian approach
نویسندگان
چکیده
BACKGROUND An important public health goal is to decrease the prevalence of key behavioural risk factors, such as tobacco use and obesity. Survey information is often available at the regional level, but heterogeneity within large geographic regions cannot be assessed. Advanced spatial analysis techniques are demonstrated to produce sensible micro area estimates of behavioural risk factors that enable identification of areas with high prevalence. METHODS A spatial Bayesian hierarchical model was used to estimate the micro area prevalence of current smoking and excess bodyweight for the Erie-St. Clair region in southwestern Ontario. Estimates were mapped for male and female respondents of five cycles of the Canadian Community Health Survey (CCHS). The micro areas were 2006 Census Dissemination Areas, with an average population of 400-700 people. Two individual-level models were specified: one controlled for survey cycle and age group (model 1), and one controlled for survey cycle, age group and micro area median household income (model 2). Post-stratification was used to derive micro area behavioural risk factor estimates weighted to the population structure. SaTScan analyses were conducted on the granular, postal-code level CCHS data to corroborate findings of elevated prevalence. RESULTS Current smoking was elevated in two urban areas for both sexes (Sarnia and Windsor), and an additional small community (Chatham) for males only. Areas of excess bodyweight were prevalent in an urban core (Windsor) among males, but not females. Precision of the posterior post-stratified current smoking estimates was improved in model 2, as indicated by narrower credible intervals and a lower coefficient of variation. For excess bodyweight, both models had similar precision. Aggregation of the micro area estimates to CCHS design-based estimates validated the findings. CONCLUSIONS This is among the first studies to apply a full Bayesian model to complex sample survey data to identify micro areas with variation in risk factor prevalence, accounting for spatial correlation and other covariates. Application of micro area analysis techniques helps define areas for public health planning, and may be informative to surveillance and research modeling of relevant chronic disease outcomes.
منابع مشابه
Comparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملBayesian melding for estimating uncertainty in national HIV prevalence estimates
OBJECTIVE To construct confidence intervals for HIV prevalence in countries with generalised epidemics. METHODS In the Bayesian melding approach, a sample of country-specific epidemic curves describing HIV prevalence over time is derived based on time series of antenatal clinic prevalence data and general information on the parameters that describe the HIV epidemic. The prevalence trends at a...
متن کاملStatistical Considerations in Determining HIV Incidence from Changes in HIV Prevalence
The development of methods for estimating HIV incidence is critical for tracking the epidemic and for designing, targeting and evaluating HIV prevention efforts. One method for estimating incidence is based on changes in HIV prevalence. That method is attracting increased attention because national population-based HIV prevalence surveys, such as Demographic and Health Surveys, are being conduc...
متن کاملEstimating diabetes prevalence by small area in England.
BACKGROUND Diabetes risk is linked to both deprivation and ethnicity, and so prevalence will vary considerably between areas. Prevalence differences may partly account for geographic variation in health performance indicators for diabetes, which are based on age standardized hospitalization or operation rates. A positive correlation between prevalence and health outcomes indicates that the latt...
متن کاملEstimating Steatosis Prevalence in Overweight and Obese Children: Comparison of Bayesian Small Area and Direct Methods
Background Often, there is no access to sufficient sample size to estimate the prevalence using the method of direct estimator in all areas. The aim of this study was to compare small area’s Bayesian method and direct method in estimating the prevalence of steatosis in obese and overweight children. Materials and Methods: In this cross-sectional study, was conducted on 150 overweight and obese ...
متن کامل