Local Discontinuous Galerkin Method for the Keller-Segel Chemotaxis Model
نویسندگان
چکیده
In this paper, we apply the local discontinuous Galerkin (LDG) method to 2D Keller– Segel (KS) chemotaxis model. We improve the results upon (Y. Epshteyn and A. Kurganov, SIAM Journal on Numerical Analysis, 47 (2008), 368-408) and give optimal rate of convergence under special finite element spaces. Moreover, to construct physically relevant numerical approximations, we develop a positivity-preserving limiter to the scheme, extending the idea in (Y. Zhang, X. Zhang and C.-W. Shu, Journal of Computational Physics, 229 (2010), 8918-8934). With this limiter, we can prove the L-stability of the numerical scheme. Numerical experiments are performed to demonstrate the good performance of the positivity-preserving LDG scheme. Moreover, it is known that the chemotaxis model will yield blow-up solutions under certain initial conditions. We numerically demonstrate how to find the numerical blow-up time by using the L-norm of the L-stable numerical approximations.
منابع مشابه
New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model
We develop a family of new interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. This model is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. It has been recently shown that the convective part of this system is of a mixed hyperbol...
متن کاملFully Discrete Analysis of a Discontinuous Finite Element Method for the Keller-Segel Chemotaxis Model
This paper formulates and analyzes fully discrete schemes for the two-dimensional Keller-Segel chemotaxis model. The spatial discretization of the model is based on the discontinuous Galerkin methods and the temporal discretization is based either on Forward Euler or the second order explicit total variation diminishing (TVD) Runge-Kutta methods. We consider Cartesian grids and prove optimal fu...
متن کاملHybridized Discontinuous Galerkin Method with Lifting Operator
UTMS 2009–21 Hajime Fujita, Mikio Furuta and Takahiko Yoshida: Torus fibrations and lo-calization of index II-Local index for acyclic compatible system-. Cauchy data for general second order elliptic operators in two dimensions. 2009–23 Yukihiro Seki: On exact dead-core rates for a semilinear heat equation with strong absorption. 2009–24 Yohsuke Takaoka: On existence of models for the logical s...
متن کاملFrom 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences
This article summarizes various aspects and results for some general formulations of the classical chemotaxis models also known as Keller-Segel models. It is intended as a survey of results for the most common formulation of this classical model for positive chemotactical movement and offers possible generalizations of these results to more universal models. Furthermore it collects open questio...
متن کاملModel Hierarchies for Cell Aggregation by Chemotaxis
We present PDE (partial differential equation) model hierarchies for the chemotactically driven motion of biological cells. Starting from stochastic differential models we derive a kinetic formulation of cell motion coupled to diffusion equations for the chemoattractants. Also we derive a fluid dynamic (macroscopic) Keller-Segel type chemotaxis model by scaling limit procedures. We review rigor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 73 شماره
صفحات -
تاریخ انتشار 2017