On the Hilbert-Huang Transform Theoretical Developments

نویسندگان

  • Semion Kizhner
  • Karin Blank
  • Thomas Flatley
  • Norden E. Huang
  • David Patrick
  • Phyllis Hestnes
چکیده

One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent the Fast Fourier Transform (FFT). Both carry strong a-priori assumptions about the source data, such as linearity, of being stationary, and of satisfjmg the Dirichlet conditions. A recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT), proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using a-posteriori data processing based on the Empirical Mode Decomposition (EMD) sifting process (algorithm), followed by the normalized Hilbert Transform of the decomposition data, the HHT allows spectrum analysis of nonlinear and nonstationary data. The EMD sifting process results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF). These functions form a near orthogonal adaptive basis, a basis that is derived from the data. The IMFs can be hrther analyzed for spectrum interpretation by the classical Hilbert Transform. A new engineering spectrum analysis tool using HHT has been developed at NASA GSFC, the HHT Data Processing System (HHT-DPS). As the HHT-DPS has been successfully used and commercialized, new applications post additional questions about the theoretical basis behind the HHT and EMD algorithms. Why is the fastest changing component of a composite signal being sifted out first in the EMD sifting process? Why does the EMD sifting process seemingly converge and why does it converge rapidly? Does an IMF have a distinctive structure? Why are the lMFs near orthogonal? We address these questions and develop the initial theoretical background for the HHT. This will contribute to the developments of new HHT processing options, such as real-time and 2-D processing using Field Programmable Array (FPGA) computational resources, enhanced HHT synthesis, and broaden the scope of HHT applications for signal processing. 1 https://ntrs.nasa.gov/search.jsp?R=20050210067 2017-12-05T19:35:55+00:00Z

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method

The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...

متن کامل

Introduction to the Hilbert Huang Transform and Its Related Mathematical Problems

The Hilbert–Huang transform (HHT) is an empirically based data-analysis method. Its basis of expansion is adaptive, so that it can produce physically meaningful representations of data from nonlinear and non-stationary processes. The advantage of being adaptive has a price: the difficulty of laying a firm theoretical foundation. This chapter is an introduction to the basic method, which is foll...

متن کامل

دسته بندی و شناسائی اهداف زیرآبی بر اساس اصوات منتشره

This paper investigates an underwater noise target classification algorithm in order to identify vessels in shallow water. To this aim the Hilbert Huang transform has been used to extract features in order to be used in a classifier. The Support Vector Machine has been considered to identify targets. The proposed method based on Hilbert Huang Transform shows considerable gain against similar ap...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

A Review on Hilbert-huang Transform: Method and Its Applications to Geophysical Studies

[1] Data analysis has been one of the core activities in scientific research, but limited by the availability of analysis methods in the past, data analysis was often relegated to data processing. To accommodate the variety of data generated by nonlinear and nonstationary processes in nature, the analysis method would have to be adaptive. Hilbert-Huang transform, consisting of empirical mode de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005