NONNUCLEAR SUBALGEBRAS OF AF ALGEBRAS By MARIUS DADARLAT

نویسنده

  • MARIUS DADARLAT
چکیده

We show that any non-type I separable unital AF algebra B can be modeled from inside by a nonnuclear C*-algebra and from outside by a nonexact C*-algebra. More precisely there exist unital separable quasidiagonal C*-algebras A B C of real rank zero, stable rank one, such that A is nonnuclear, C is nonexact, and both A and C are asymptotically homotopy equivalent to B. In particular A, B and C have the same ordered K-theory groups, hence isomorphic ideal lattices, and, A and B have (affinely) homeomorphic trace spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on the Universal Coefficient Theorem in Kk-theory

If a nuclear separable C*-algebra A can be approximated by C*-subalgebras satisfying the UCT, then A satisfies the UCT. It is also shown that the validity of the UCT for all separable nuclear C*-algebras is equivalent to a certain finite dimensional approximation property.

متن کامل

Morphisms of Simple Tracially Af Algebras

Let A, B be separable simple unital tracially AF C*-algebras. Assuming that A is exact and satisfies the Universal Coefficient Theorem (UCT) in KK-theory, we prove the existence, and uniqueness modulo approximately inner automorphisms, of nuclear ∗-homomorphisms from A to B with prescribed K-theory data. This implies the AF-embeddability of separable exact residually finite dimensional C*-algeb...

متن کامل

One-parameter Continuous Fields of Kirchberg Algebras. Ii

Parallel to the first two authors’ earlier classification of separable unital oneparameter continuous fields of Kirchberg algebras with torsion free K-groups supported in one dimension, one-parameter separable unital continuous fields of AF-algebras are classified by their ordered K0-sheaves. We prove Effros-Handelman-Shen type theorems for separable unital one-parameter continuous fields of AF...

متن کامل

Residually Finite Dimensional C*-algebras and Subquotients of the Car Algebra

It is proved that the cone of a separable nuclearly embeddable residually finite-dimensional C*-algebra embeds in the CAR algebra (the UHF algebra of type 2∞). As a corollary we obtain a short new proof of Kirchberg’s theorem asserting that a separable unital C*-algebra A is nuclearly embeddable if and only there is a semisplit extension 0 → J → E → A → 0 with E a unital C*-subalgebra of the CA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000