Lie algebras and Lie groups over noncommutative rings
نویسندگان
چکیده
The aim of this paper is to introduce and study Lie algebras and Lie groups over noncommutative rings. For any Lie algebra g sitting inside an associative algebra A and any associative algebra F we introduce and study the algebra (g,A)(F), which is the Lie subalgebra of F ⊗ A generated by F ⊗ g. In many examples A is the universal enveloping algebra of g. Our description of the algebra (g,A)(F) has a striking resemblance to the commutator expansions of F used by M. Kapranov in his approach to noncommutative geometry. To each algebra (g,A)(F) we associate a “noncommutative algebraic” group which naturally acts on (g,A)(F) by conjugations and conclude the paper with some examples of such groups. © 2008 Elsevier Inc. All rights reserved.
منابع مشابه
Noncommutative Loops over Lie Algebras and Lie Groups
The aim of this paper is to introduce and study Lie algebras over noncommutative rings. For any Lie algebra g sitting inside an associative algebra A and any associative algebra F we introduce and study the F -loop algebra (g, A)(F), which is the Lie subalgebra of F ⊗ A generated by F ⊗ g. In most examples A is the universal enveloping algebra of g. Our description of the loop algebra has a str...
متن کاملArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملOn dimension of a special subalgebra of derivations of nilpotent Lie algebras
Let $L$ be a Lie algebra, $mathrm{Der}(L)$ be the set of all derivations of $L$ and $mathrm{Der}_c(L)$ denote the set of all derivations $alphainmathrm{Der}(L)$ for which $alpha(x)in [x,L]:={[x,y]vert yin L}$ for all $xin L$. We obtain an upper bound for dimension of $mathrm{Der}_c(L)$ of the finite dimensional nilpotent Lie algebra $L$ over algebraically closed fields. Also, we classi...
متن کاملRealization of locally extended affine Lie algebras of type $A_1$
Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...
متن کاملFiber bundles and Lie algebras of top spaces
In this paper, by using of Frobenius theorem a relation between Lie subalgebras of the Lie algebra of a top space T and Lie subgroups of T(as a Lie group) is determined. As a result we can consider these spaces by their Lie algebras. We show that a top space with the finite number of identity elements is a C^{∞} principal fiber bundle, by this method we can characterize top spaces.
متن کامل