Ionizing radiation-induced XRCC4 phosphorylation is mediated through ATM in addition to DNA-PK
نویسندگان
چکیده
XRCC4 (X-ray cross-complementation group 4) is a protein associated with DNA ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end-joining. It has been shown that, in response to irradiation or treatment with DNA damaging agents, XRCC4 undergoes phosphorylation, requiring DNA-PK. Here we explored possible role of ATM, which is structurally related to DNA-PK, in the regulation of XRCC4. The radiosensitizing effects of DNA-PK inhibitor and/or ATM inhibitor were dependent on XRCC4. DNA-PK inhibitor and ATM inhibitor did not affect the ionizing radiation-induced chromatin recruitment of XRCC4. Ionizing radiation-induced phosphorylation of XRCC4 in the chromatin-bound fraction was largely inhibited by DNA-PK inhibitor but further diminished by the combination with ATM inhibitor. The present results indicated that XRCC4 phosphorylation is mediated through ATM as well as DNA-PK, although DNA-PK plays the major role. We would propose a possible model that DNA-PK and ATM acts in parallel upstream of XRCC4, regulating through phosphorylation.
منابع مشابه
In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage
XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified ...
متن کاملH2AX after Exposure to Ionizing Radiation ATM and DNA-PK Function Redundantly to Phosphorylate
H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to ionizing radiation (IR) occurs to similar...
متن کاملPhosphorylation of polynucleotide kinase/ phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) a...
متن کاملATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation.
H2AX phosphorylation is an early step in the response to DNA damage. It is widely accepted that ATM (ataxia telangiectasia mutated protein) phosphorylates H2AX in response to DNA double-strand breaks (DSBs). Whether DNA-dependent protein kinase (DNA-PK) plays any role in this response is unclear. Here, we show that H2AX phosphorylation after exposure to ionizing radiation (IR) occurs to similar...
متن کاملSelective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine.
Caffeine inhibits cell cycle checkpoints, sensitizes cells to ionizing radiation-induced cell killing and inhibits the protein kinase activity of two cell cycle checkpoint regulators, Ataxia-Telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR). In contrast, caffeine has been reported to have little effect on the protein kinase activity of the DNA-dependent protein kinase (DNA-PK), which...
متن کامل