Structural basis for the phosphatase activity of polynucleotide kinase/phosphatase on single- and double-stranded DNA substrates.
نویسندگان
چکیده
Polynucleotide kinase/phosphatase (PNKP) is a critical mammalian DNA repair enzyme that generates 5'-phosphate and 3'-hydroxyl groups at damaged DNA termini that are required for subsequent processing by DNA ligases and polymerases. The PNKP phosphatase domain recognizes 3'-phosphate termini within DNA nicks, gaps, or at double- or single-strand breaks. Here we present a mechanistic rationale for the recognition of damaged DNA termini by the PNKP phosphatase domain. The crystal structures of PNKP bound to single-stranded DNA substrates reveals a narrow active site cleft that accommodates a single-stranded substrate in a sequence-independent manner. Biochemical studies suggest that the terminal base pairs of double-stranded substrates near the 3'-phosphate are destabilized by PNKP to allow substrate access to the active site. A positively charged surface distinct from the active site specifically facilitates interactions with double-stranded substrates, providing a complex DNA binding surface that enables the recognition of diverse substrates.
منابع مشابه
The phosphatase activity of mammalian polynucleotide kinase takes precedence over its kinase activity in repair of single strand breaks
The dual function mammalian DNA repair enzyme, polynucleotide kinase (PNK), facilitates strand break repair through catalysis of 5'-hydroxyl phosphorylation and 3'-phosphate dephosphorylation. We have examined the relative activities of the kinase and phosphatase functions of PNK using a novel assay, which allows the simultaneous characterization of both activities in processing nicks and gaps ...
متن کاملATM-mediated phosphorylation of polynucleotide kinase/phosphatase is required for effective DNA double-strand break repair.
The cellular response to double-strand breaks (DSBs) in DNA is a complex signalling network, mobilized by the nuclear protein kinase ataxia-telangiectasia mutated (ATM), which phosphorylates many factors in the various branches of this network. A main question is how ATM regulates DSB repair. Here, we identify the DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) as an ATM target. PNKP...
متن کاملRecognition of DNA substrates by T4 bacteriophage polynucleotide kinase.
T4 phage polynucleotide kinase (PNK) displays 5'-hydroxyl kinase, 3'-phosphatase and 2',3'-cyclic phosphodiesterase activities. The enzyme phosphorylates the 5' hydroxyl termini of a wide variety of nucleic acid substrates, a behavior studied here through the determination of a series of crystal structures with single-stranded (ss)DNA oligonucleotide substrates of various lengths and sequences....
متن کاملXRCC1 Stimulates Human Polynucleotide Kinase Activity at Damaged DNA Termini and Accelerates DNA Single-Strand Break Repair
XRCC1 protein is required for DNA single-strand break repair and genetic stability but its biochemical role is unknown. Here, we report that XRCC1 interacts with human polynucleotide kinase in addition to its established interactions with DNA polymerase-beta and DNA ligase III. Moreover, these four proteins are coassociated in multiprotein complexes in human cell extract and together they repai...
متن کاملPhosphorylation of polynucleotide kinase/ phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 108 52 شماره
صفحات -
تاریخ انتشار 2011