The Α-invariant on Cp#2cp2

نویسنده

  • Jian Song
چکیده

The global holomorphic invariant αG(M) introduced by Tian [6], Tian and Yau [5] is closely related to the existence of Kähler-Einstein metrics. In his solution of the Calabi conjecture, Yau [11] proved the existence of a KählerEinstein metric on compact Kähler manifolds with nonpositive first Chern class. Kähler-Einstein metrics do not always exist in the case when the first Chern class is positive, for there are known obstructions such as the Futaki invariant. For a compact Kähler manifold M with positive Chern class, Tian [6] proved that M admits a Kähler-Einstein metric if αG(M) > n n+1 , where n = dimM . In the case of compact complex surfaces, he proved that any compact complex surface with positive first Chern class admits a Kähler-Einstein metric except CP #1CP 2 and CP #2CP 2 [8]. It would be also interesting to find the estimate of the α invariant for CP #1CP 2 and CP #2CP 2. In this paper, we apply the Tian-Yau-Zelditch expansion of the Bergman kernel on polarized Kähler metrics to approximate plurisubharmonic functions and compute the α-invariant of CP #2CP 2. This gives an improvement of Abdesselem’s result [1]. More precisely, we shall show that:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Α-invariant on Cp2#2cp2

The global holomorphic invariant αG(M) introduced by Tian[6], Tian and Yau[5] is closely related to the existence of Kähler-Einstein metrics. In his solution of the Calabi conjecture, Yau[11] proved the existence of a KählerEinstein metric on compact Kähler manifolds with nonpositive first Chern class. Kähler-Einstein metrics do not always exist in the case when the first Chern class is positiv...

متن کامل

Ricci Curvature on the Blow-up of Cp2 at Two Points

It is well-known that the αG(M)-invariant introduced by Tian plays an important role in the study of the existence of Kähler-Einstein metrics on complex manifolds with positive first Chern class ([T1], [T2], [TY]). Based on the estimate of αG(M)-invariant, Tian in 1990 proved that any complex surface with c1(M) > 0 always admits a Kähler-Einstein metric except in two cases CP2#1CP2 and CP2#2CP2...

متن کامل

The Α-invariant on Certain Surfaces with Symmetry Groups

The global holomorphic α-invariant introduced by Tian is closely related to the existence of Kähler-Einstein metrics. We apply the result of Tian, Yau and Zelditch on polarized Kähler metrics to approximate plurisubharmonic functions and compute the α-invariant on CP 2#nCP 2 for n = 1, 2, 3.

متن کامل

Invariant of the hypergeometric group associated to the quantum cohomology of the projective space

We begin with a short review on the motivation of our problem making reference to the works [5], [10] where one can find precise definitions of the notions below. At first, we consider a k− dimensional Frobenius manifold F with flat coordinates (t1, · · · , tk)∈ F where the coordinate ti corresponds to coefficients of the basis ∆i of the quantum cohomology H ∗(CP). On H∗(CP) one can define so c...

متن کامل

The Pants Complex Has Only One End Howard Masur and Saul Schleimer

Recall that a pants decomposition of S consists of 3g(S)−3 disjoint essential non-parallel simple closed curves on S. Each component of the complement of the curves is a sphere with 3 holes or pair of pants. Then the pants complex CP (S) is the metric graph whose vertices are pants decompositions of S, up to isotopy. Two vertices P,P ′ are connected by an edge if P,P ′ differ by an elementary m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002