Genetically engineered bacterial cells co-expressing human cytochrome P450 with NADPH-cytochrome P450 reductase: prediction of metabolism and toxicity of drugs in humans.

نویسندگان

  • Ken-Ichi Fujita
  • Tetsuya Kamataki
چکیده

Genetically engineered bacterial cells expressing human cytochrome P450 (CYP) have been developed as new tools to predict the metabolism and toxicity of drugs in humans. There are various host cells for the heterologous expression of a form of CYP. Among them, bacterial cells such as Escherichia coli (E. coli) have advantages with regard to ease of use and high yield of protein. CYP protein could be first expressed by the modification of the N-terminal amino acid sequence in E. coli cells in 1991. Since then, many forms of human CYP have been successfully expressed in E. coli cells. Since the E. coli cells do not possess endogeneous electron transport systems to support the full catalytic activity of CYP, E. coli strains co-expressing both human CYP and NADPH-cytochrome P450 reductase (OR) have been established. Each form of CYP expressed in the E. coli cells efficiently catalyzed the oxidation of a representative substrate at an efficient rate, indicating that the OR was sufficiently expressed to support the catalytic activity of CYP. According to the studies performed so far, the modification of the N-terminal amino acid sequence of CYP did not seem to affect the catalytic properties of CYP. The human CYP expressed in the E. coli cells were applicable for studies to determine a metabolic pathway(s) of drugs and to estimate kinetic parameters of drug metabolism by human CYP. Drug-drug interactions caused by inhibition of the metabolism of drugs by human CYP could also be examined by in vitro inhibition studies with CYP expressed in the E. coli cells. Recently, human CYP was co-expressed with the OR in Salmonella typhimurium (S. typhimurium) cells used for mutation assay (Ames test) by applying the technology for the expression of human CYP and the OR in E. coli cells, to evaluate whether chemicals including drugs are metabolically activated by human CYP and show mutagenicity. These strains of bacteria are considered as useful tools to study the metabolism and the toxicity of drugs in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells

Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

Cytochrome C and Caspase-3/7 are Involved in Mycophenolic Acid-induced Apoptosis in Genetically Engineered PC12 Neuronal Cells Expressing the p53 Gene

Mycophenolic acid (MPA) is the active metabolite of mycophenolate mofetil. This study designed to investigate the mechanism of cytotoxicity of MPA on the genetically engineered PC12 Tet Off (PTO) neuronal cells with p53 gene. Alamar Blue (AB) reduction showed concentration-dependent cytotoxicity of MPA on PTO cells with IC50 value of 32.32 ± 4.61 mM. The reactive oxygen species (ROS) generation...

متن کامل

V79 Chinese hamster cells genetically engineered for polymorphic cytochrome P450 2D6 and their predictive value for humans.

With more than 30 genetic variants human cytochrome P450 2D6 (CYP2D6) presents the most extensive variation among all cytochromes P450. At the same time, roughly 30% of all drugs are metabolised by CYP2D6. Therefore, V79 Chinese hamster cells were genetically engineered for the genetic variants *1, *2, *9, *10, and *17 encoding active enzymes. These cells are to be used to understand and to pre...

متن کامل

Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and pharmacokinetics

دوره 17 1  شماره 

صفحات  -

تاریخ انتشار 2002