A blood-mimicking fluid for particle image velocimetry with silicone vascular models

نویسندگان

  • Majid Y. Yousif
  • David W. Holdsworth
  • Tamie L. Poepping
چکیده

For accurate particle image velocimetry measurements in hemodynamics studies it is important to use a fluid with a refractive index (n) matching that of the vascular models (phantoms) and ideally a dynamic viscosity matching human blood. In this work, a blood-mimicking fluid (BMF) composed of water, glycerol, and sodium iodide was formulated for a range of refractive indices to match most common silicone elastomers (n=1.40-1.43) and with corresponding dynamic viscosity within the average cited range of healthy human blood (4.4±0.5 cP). Both refractive index and viscosity were attained at room temperature (22.2±0.2°C), which eliminates the need for a temperature-control system. An optimally matched BMF, suitable for use in a vascular phantom (n=1.4140±0.0008, Sylgard 184), was demonstrated with composition (by weight) of 47.38% water, 36.94% glycerol (44:56 glycerol-water ratio), and 15.68% sodium iodide salt, resulting in a dynamic viscosity of 4.31±0.03 cP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle image velocimetry measurements of blood velocity in a continuous flow ventricular assist device.

The third prototype of a continuous flow ventricular assist device (CFVAD3) is being developed and tested for implantation in humans. The blood in the pump flows through a fully shrouded four-bladed impeller (supported by magnetic bearings) and through small clearance regions on either side of the impeller. Measurements of velocities using particle image velocimetry of a fluid with the same vis...

متن کامل

Comparisons of Experimental and Simulated Velocity Fields in Membrane Module Spacers

Spacers are used in spiral wound and plate and frame membrane modules to create flow channels between adjacent membrane layers and mix fluid within the flow channel. Flow through the spacer has a significant beneficial impact on mixing and resulting mass transfer rates but is accompanied by an undesirable increase in pressure drop. Computational Fluid Dynamics (CFD) is a common tool used to eva...

متن کامل

Fluid Dynamics Investigation of a GDI Fuel Spray by Particle Image Velocimetry

In this work, result of experimental investigation on interaction of fuel spray generated by a swirled type injector, with air motion in a prototype cylinder are presented. Experiments were carried out by planar imaging and particle image velocimetry (PIV) techniques in order to provide information about the spray structure evolution and instantaneous velocity distribution of air motion and ...

متن کامل

A three-dimensional strain measurement method in elastic transparent materials using tomographic particle image velocimetry

BACKGROUND The mechanical interaction between blood vessels and medical devices can induce strains in these vessels. Measuring and understanding these strains is necessary to identify the causes of vascular complications. This study develops a method to measure the three-dimensional (3D) distribution of strain using tomographic particle image velocimetry (Tomo-PIV) and compares the measurement ...

متن کامل

Micro-particle image velocimetry for velocity profile measurements of micro blood flows.

Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows. The images are cross-correlated to give an accurate velocity profile. A protocol is presented for μPIV measurements of blood flows in microchannels. At the scale of the microcirculation, blood cannot be considered a homogeneous fluid, as it is a suspension of flexible particles s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010