Weak Approximation of a Fractional Sde
نویسنده
چکیده
Abstract. In this note, a diffusion approximation result is shown for stochastic differential equations driven by a (Liouville) fractional Brownian motion B with Hurst parameter H ∈ (1/3, 1/2). More precisely, we resort to the Kac-Stroock type approximation using a Poisson process studied in [4, 7], and our method of proof relies on the algebraic integration theory introduced by Gubinelli in [13].
منابع مشابه
Weak Approximation of a Fractional Sde
After a decade of efforts [2, 5, 9, 15, 16, 20, 21], it can arguably be said that the basis of the stochastic integration theory with respect to a rough path in general, and with respect to a fractional Brownian motion (fBm in the sequel) in particular, has been now settled in a rather simple and secure way. This allows in particular to define rigorously and solve equations on an arbitrary inte...
متن کاملAn extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative
Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...
متن کاملThe Rate of Convergence of Euler Approximations for Solutions of Stochastic Differential Equations Driven by Fractional Brownian Motion
The paper focuses on discrete-type approximations of solutions to non-homogeneous stochastic differential equations (SDEs) involving fractional Brownian motion (fBm). We prove that the rate of convergence for Euler approximations of solutions of pathwise SDEs driven by fBm with Hurst index H > 1/2 can be estimated by O(δ) (δ is the diameter of partition). For discrete-time approximations of Sko...
متن کاملA Weak Trapezoidal Method for a Class of Stochastic Differential Equations
Abstract. We present a numerical method for the approximation of solutions for the class of stochastic differential equations driven by Brownian motions which induce stochastic variation in fixed directions. This class of equations arises naturally in the study of population processes and chemical reaction kinetics. We show that the method constructs paths that are second order accurate in the ...
متن کاملStochastic averaging for SDEs with Hopf Drift and polynomial diffusion coefficients
It is known that a stochastic differential equation (SDE) induces two probabilistic objects, namely a difusion process and a stochastic flow. While the diffusion process is determined by the innitesimal mean and variance given by the coefficients of the SDE, this is not the case for the stochastic flow induced by the SDE. In order to characterize the stochastic flow uniquely the innitesimal cov...
متن کامل