Weighted Composition Operator from Bloch–type Space to H∞ Space on the Unit Ball
نویسندگان
چکیده
In this paper, we characterize those holomorphic symbols u on the unit ball B and holomorphic self-mappings φ of B for which the weighted composition operator uCφ is bounded or compact from Bloch-type space to H∞ space. Mathematics subject classification (2010): Primary 47B33; Secondary 47B38.
منابع مشابه
Essential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کاملWeighted Composition Operator from Bers-Type Space to Bloch-Type Space on the Unit Ball
In this paper, we characterize the boundedness and compactness of weighted composition operator from Bers-type space to Bloch-type space on the unit ball of Cn. 2010 Mathematics Subject Classification: Primary: 47B38; Secondary: 32A37, 32A38, 32H02, 47B33
متن کاملOn a New Integral-Type Operator from the Weighted Bergman Space to the Bloch-Type Space on the Unit Ball
We introduce an integral-type operator, denoted by P φ , on the space of holomorphic functions on the unit ball B ⊂ C, which is an extension of the product of composition and integral operators on the unit disk. The operator norm of P φ from the weighted Bergman space A p α B to the Bloch-type space Bμ B or the little Bloch-type space Bμ,0 B is calculated. The compactness of the operator is cha...
متن کاملGeneralized Composition Operator from Bloch–type Spaces to Mixed–norm Space on the Unit Ball
Let H(B) be the space of all holomorphic functions on the unit ball B in CN , and S(B) the collection of all holomorphic self-maps of B . Let φ ∈ S(B) and g ∈ H(B) with g(0) = 0 , the generalized composition operator is defined by C φ ( f )(z) = ∫ 1 0 R f (φ(tz))g(tz) dt t , Here, we characterize the boundedness and compactness of the generalized composition operator acting from Bloch-type spac...
متن کامل