Median orders of tournaments: A tool for the second neighborhood problem and Sumner's conjecture

نویسندگان

  • Frédéric Havet
  • Stéphan Thomassé
چکیده

We give a short constructive proof of a theorem of Fisher: every tournament contains a vertex whose second outneighborhood is as large as its ®rst outneighborhood. Moreover, we exhibit two such vertices provided that the tournament has no dominated vertex. The proof makes use of median orders. A second application of median orders is that every tournament of order 2nÿ 2 contains every arborescence of order n> 1. This is a particular case of Sumner's conjecture: every tournament of order 2nÿ 2 contains every oriented tree of order n> 1. Using our method, we prove that every tournament of order (7nÿ 5)/2 contains every oriented tree of order n. ß 2000 John Wiley & Sons, Inc. J Graph Theory 35: 244±256, 2000

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Median orders of tournaments: a tool for the second neighbourhood problem and Sumner’s conjecture

We give a short constructive proof of a theorem of Fisher: every tournament contains a vertex whose second outneighbourhood is as large as its first outneighbourhood. Moreover, we exhibit two such vertices provided that the tournament has no dominated vertex. The proof makes use of median orders. A second application of median orders is that every tournament of order 2n − 2 contains every arbor...

متن کامل

Remarks on the second neighborhood problem

The second neighborhood conjecture of Seymour asserts that for any orientation G = (V,E), there exists a vertex v ∈ V so that |N(v)| ≤ |N(v)|. The conjecture was resolved by Fisher for tournaments. In this paper we prove the second neighborhood conjecture for several additional classes of dense orientations. We also prove some approximation results, and reduce an asymptotic version of the conje...

متن کامل

Minimizing Total Weighted Tardiness in a Flexible Flowshop Environment Considering Batch Processing Machines

Scheduling in production environments is used as a competitive tool to improve efficiency and respond to customer requests. In this paper, a scheduling problem is investigated in a three-stage flexible flowshop environment with the consideration of blocking and batch processing. This problem has been inspired by the charging and packaging line of a large battery manufacturer. In this environmen...

متن کامل

A proof of Sumner's universal tournament conjecture for large tournaments

Sumner’s universal tournament conjecture states that any tournament on 2n−2 vertices contains any directed tree on n vertices. In this paper we prove that this conjecture holds for all sufficiently large n. The proof makes extensive use of results and ideas from a recent paper by the same authors, in which an approximate version of the conjecture was

متن کامل

About the second neighborhood problem in tournaments missing disjoint stars

Let D be a digraph without digons. Seymour’s second neighborhood conjecture states that D has a vertex v such that d(v) ≤ d(v). Under some conditions, we prove this conjecture for digraphs missing n disjoint stars. Weaker conditions are required when n = 2 or 3. In some cases we exhibit two such vertices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2000