Prepulse inhibition of the Tritonia escape swim.

نویسندگان

  • D L Mongeluzi
  • T A Hoppe
  • W N Frost
چکیده

Presenting a weak stimulus just before a strong, startle stimulus reduces the amplitude of the ensuing startle response in humans and other vertebrates. This phenomenon, termed "prepulse inhibition" (PPI), appears to function to reduce distraction while processing sensory input. To date, no detailed neural mechanism has been described for PPI. Here we demonstrate PPI in the marine mollusk Tritonia diomedea, which has a nervous system highly suitable for cellular analyses. We found that a 100 msec vibrotactile prepulse prevented the animal's escape swim response to a closely following 1 sec tail shock. This inhibition was highly transient, with a significant effect lasting just 2.5 sec. These findings indicate that the Tritonia escape swim response undergoes a form of PPI phenomenologically similar to that observed in vertebrates. Further tests showed that the vibrotactile stimulus had no inhibitory effect if applied after tail shock, while the animal was preparing to swim, but it acted to terminate swims once they were actively under way. As a first step toward a cellular analysis of PPI, we recorded from neurons of the swim circuit in a semi-intact preparation and found that the vibrotactile stimulus used in the behavioral experiments also prevented the tail shock-elicited swim motor program. These results represent the first explicit demonstration of PPI in an invertebrate and establish Tritonia as a model system for analyzing its physiological basis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dishabituation of the Tritonia escape swim.

When repeatedly elicited, the oscillatory escape swim of the marine mollusc Tritonia diomedea undergoes habituation of the number of cycles per swim. Although similar in most respects to habituation observed in vertebrates and other invertebrates, one key feature, dishabituation, has been surprisingly difficult to demonstrate. Here we evaluate the hypothesis that this is due to interference fro...

متن کامل

Axonal conduction block as a novel mechanism of prepulse inhibition.

In prepulse inhibition (PPI), the startle response to a strong, unexpected stimulus is diminished if shortly preceded by the onset of a different stimulus. Because deficits in this inhibitory gating process are a hallmark feature of schizophrenia and certain other psychiatric disorders, the mechanisms underlying PPI are of significant interest. We previously used the invertebrate model system T...

متن کامل

Highly dissimilar behaviors mediated by a multifunctional network in the marine mollusk Tritonia diomedea.

Several motor networks have now been found to be multifunctional, in which one group of neurons participates in the generation of multiple behavioral motor programs. Not surprisingly, the behaviors involved are frequently closely related, often using the same or similar muscle groups. Here we describe an interneuronal network in the marine mollusk Tritonia diomedea that is involved in producing...

متن کامل

G protein signaling in a neuronal network is necessary for rhythmic motor pattern production.

G protein-coupled receptors are widely recognized as playing important roles in mediating the actions of extrinsic neuromodulatory inputs to motor networks. However, the potential for their direct involvement in rhythmic motor pattern generation has received considerably less attention. Results from this study indicate that G protein signaling appears to be integral to the operation of the cent...

متن کامل

Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 20  شماره 

صفحات  -

تاریخ انتشار 1998