Identification and Adjustment of Guide Rail Geometric Errors Based on BP Neural Network
نویسندگان
چکیده
The relative positions between the four slide blocks vary with the movement of the table due to the geometric errors of the guide rail. Consequently, the additional load on the slide blocks is increased. A new method of error measurement and identification by using a selfdesigned stress test plate was presented. BP neural network model was used to establish the mapping between the stress of key measurement points on the test plate and the displacements of slide blocks. By measuring the stress, the relative displacements of slide blocks were obtained, from which the geometric errors of the guide rails were converted. Firstly, the finite element model was built to find the key measurement points of the test plate. Then the BP neural network was trained by using the samples extracted from the finite element model. The stress at the key measurement points were taken as the input and the relative displacements of the slide blocks were taken as the output. Finally, the geometric errors of the two guide rails were obtained according to the measured stress. The results show that the maximum difference between the measured geometric errors and the output of BP neural network was 5 μm. Therefore, the correctness and feasibility of the method were verified.
منابع مشابه
Inverse Identification of Circular Cavity in a 2D Object via Boundary Temperature Measurements Using Artificial Neural Network
In geometric inverse problems, it is assumed that some parts of domain boundaries are not accessible and geometric shape and dimensions of these parts cannot be measured directly. The aim of inverse geometry problems is to approximate the unknown boundary shape by conducting some experimental measurements on accessible surfaces. In the present paper, the artificial neural network is used to sol...
متن کاملWavelet Neural Network-based Short-Term Passenger Flow Forecasting on Urban Rail Transit
Accurate forecasting of short-term passenger flow has been one of the most important issues in urban rail transit planning and operation. Considering the shortcomings of traditional forecasting methods, and in order to improve forecasting accuracy of passenger flow, this paper presents a wavelet neural network (WNN) for short-term passenger flow forecasting. One real urban rail transit station ...
متن کاملA generalized ABFT technique using a fault tolerant neural network
In this paper we first show that standard BP algorithm cannot yeild to a uniform information distribution over the neural network architecture. A measure of sensitivity is defined to evaluate fault tolerance of neural network and then we show that the sensitivity of a link is closely related to the amount of information passes through it. Based on this assumption, we prove that the distribu...
متن کاملPredicting air pollution in Tehran: Genetic algorithm and back propagation neural network
Suspended particles have deleterious effects on human health and one of the reasons why Tehran is effected is its geographically location of air pollution. One of the most important ways to reduce air pollution is to predict the concentration of pollutants. This paper proposed a hybrid method to predict the air pollution in Tehran based on particulate matter less than 10 microns (PM10), and the...
متن کاملSaturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study
In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...
متن کامل