An Entropy Satisfying Muscl

نویسنده

  • Philippe G. LeFloch
چکیده

For the high order numerical approximation of hyperbolic systems of conservation laws, we propose to use as a building principle an entropy diminishing criterion instead of the familiar total variation diminishing criterion introduced by Harten for scalar equations. Based on this new criterion, we derive entropy diminishing projections that ensure, both, the second order of accuracy and all of the classical discrete entropy inequalities. The resulting scheme is a nonlinear version of the classical Van Leer's MUSCL scheme. Strong convergence of this second order, entropy satisfying scheme is proved for systems of two equations. Numerical tests demonstrate the interest of our theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MUSCL method satisfying all the numerical entropy inequalities

We consider here second-order finite volume methods for onedimensional scalar conservation laws. We give a method to determine a slope reconstruction satisfying all the exact numerical entropy inequalities. It avoids inhomogeneous slope limitations and, at least, gives a convergence rate of ∆x1/2. It is obtained by a theory of second-order entropic projections involving values at the nodes of t...

متن کامل

Convergence of Second - Order Schemes for Isentropic Gas Dynamics

Convergence of a second-order shock-capturing scheme for the system of isentropic gas dynamics with L°° initial data is established by analyzing the entropy dissipation measures. This scheme is modified from the classical MUSCL scheme to treat the vacuum problem in gas fluids and to capture local entropy near shock waves. Convergence of this scheme for the piston problem is also discussed.

متن کامل

Robustness of MUSCL schemes for 2D unstructured meshes

We consider second-order accuracy MUSCL schemes to approximate the solutions of hyperbolic system of conservation laws. In the context of the 2D unstructured grids, we propose a limitation procedure on the gradient reconstruction to enforce several stability properties. We establish that the MUSCL scheme preserves the invariant domains and satisfy a set of entropy inequalities. A conservation a...

متن کامل

A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics

We present a highly robust second order accurate scheme for the Euler equations and the ideal MHD equations. The scheme is of predictor-corrector type, with a MUSCL scheme following as a special case. The crucial ingredients are an entropy stable approximate Riemann solver and a new spatial reconstruction that ensures positivity of mass density and pressure. For multidimensional MHD, a new disc...

متن کامل

On convergence of numerical schemes for hyperbolic conservation laws with stiff source terms

We deal in this study with the convergence of a class of numerical schemes for scalar conservation laws including stiff source terms. We suppose that the source term is dissipative but it is not necessarily a Lipschitzian function. The convergence of the approximate solution towards the entropy solution is established for first and second order accurate MUSCL and for splitting semi-implicit met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996