Norms of Linear-fractional Composition Operators

نویسندگان

  • P. S. BOURDON
  • C. H. SPOFFORD
چکیده

We obtain a representation for the norm of the composition operator Cφ on the Hardy space H 2 whenever φ is a linear-fractional mapping of the form φ(z) = b/(cz + d). The representation shows that, for such mappings φ, the norm of Cφ always exceeds the essential norm of Cφ. Moreover, it shows that a formula obtained by Cowen for the norms of composition operators induced by mappings of the form φ(z) = sz + t has no natural generalization that would yield the norms of all linear-fractional composition operators. For rational numbers s and t, Cowen’s formula yields an algebraic number as the norm; we show, e.g., that the norm of C1/(2−z) is a transcendental number. Our principal results are based on a process that allows us to associate with each non-compact linear-fractional composition operator Cφ, for which ‖Cφ‖ > ‖Cφ‖e, an equation whose maximum (real) solution is ‖Cφ‖. Our work answers a number of questions in the literature; for example, we settle an issue raised by Cowen and MacCluer concerning co-hyponormality of a certain family of composition operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Norms and Spectral Radii of Linear Fractional Composition Operators on the Ball

We give a new proof that every linear fractional map of the unit ball induces a bounded composition operator on the standard scale of Hilbert function spaces on the ball, and obtain norm bounds analogous to the standard one-variable estimates. We also show that Cowen’s one-variable spectral radius formula extends to these operators. The key observation underlying these results is that every lin...

متن کامل

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

A comparative study of fuzzy norms of linear operators on a fuzzy normed linear spaces

In the present paper, we rst modify the concepts of weakly fuzzy boundedness, strongly fuzzy boundedness, fuzzy continuity, strongly fuzzy continuity and weakly fuzzy continuity. Then, we try to nd some relations by making a comparative study of the fuzzy norms of linear operators.

متن کامل

Which Linear-fractional Composition Operators Are Essentially Normal?

We characterize the essentially normal composition operators induced on the Hardy space H2 by linear fractional maps; they are either compact, normal, or (the nontrivial case) induced by parabolic non-automorphisms. These parabolic maps induce the first known examples of nontrivially essentially normal composition operators. In addition we characterize those linearfractionally induced compositi...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004