Heterogeneous Flow Structure in Gas-solid Risers: Continuous Modeling

نویسندگان

  • Dawei Wang
  • Jun
  • Chao Zhu
چکیده

Abstract Gas-solid riser flow exhibits strong heterogeneous structure in both axial direction and radial directions. Recent experimental studies reveal that the general radial solids concentration profiles present a double ring structure and the formation of a solid core region which have a relative higher concentration than the annulus region. This paper is focused on a comprehensive modeling of continuous gas-solids flow structure both in radial and axial directions. The specific transport mechanism due to collisional diffusive mass transfer and turbulent mass transfer are modeled. The radial heterogeneous flow structure of solids and gas at the different stage of the riser are investigated in detail. This mechanistic model, implemented with a detailed axial flow structure model, consists of a set of coupled ordinary-differential equations developed from conservation laws of mass, momentum and kinetic energy of both gas and solids phases. The solving algorithm is based on the Runge-Kutta method. The proposed model predicts the phase transport profiles such as the solids concentration, phase velocities and pressure drops in different regions along the riser. The model also yields the critical information of flow structure characteristics such as back flow, wall frictions and choking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) Study of Mass-Transfer Mechanisms in Riser Flow

We report a computational fluid dynamics-discrete element method (CFD-DEM) simulation study on the interplay between mass transfer and a heterogeneous catalyzed chemical reaction in cocurrent gas-particle flows as encountered in risers. Slip velocity, axial gas dispersion, gas bypassing, and particle mixing phenomena have been evaluated under riser flow conditions to study the complex system be...

متن کامل

A Study of Gas Flow in a Slurry Bubble Column Reactor for the DME Direct Synthesis: Mathematical Modeling from Homogeneity vs. Heterogeneity Point of View

In the present study, a heterogeneous and homogeneous gas flow dispersion model for simulation and optimization of a large-scale catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from synthesis gas (syngas) and CO2, using a churn-turbulent regime was developed. In the heterogeneous flow model, the gas phase was distributed into two bubble phases including small and large...

متن کامل

MODELING OF RAPID SOLIDIFICATION PROCESS IN THE GAS ATOMIZATION OF MOLTEN METALS

In the present work, a model was proposed to predict the thermal history during rapid solidification (RS) of metal droplets in the gas atomization process. The classical theory of heterogeneous nucleation was based on Newtonian heat flow and enthalpy method. Solving the governing numerical equations by the finite difference method (FDM) gave up the opportunity of analyzing the temperature-time ...

متن کامل

3D Finite element modeling for Dynamic Behavior Evaluation of Marin Risers Due to VIV and Internal Flow

The complete 3D nonlinear dynamic problem of extensible, flexible risers conveying fluid is considered. For describing the dynamics of the system, the Newtonian derivation procedure is followed. The velocity field inside the pipe formulated using hydrostatic and Bernoulli equations. The hydrodynamic effects of external fluids are taken into consideration through the nonlinear drag forces in var...

متن کامل

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008