NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models

نویسندگان

  • Jo Eidsvik
  • Sara Martino
  • Håvard Rue
چکیده

In this paper we propose fast approximate methods for computing posterior marginals in spatial generalized linear mixed models. We consider the common geostatistical special case with a high dimensional latent spatial variable and observations at only a few known registration sites. Our methods of inference are deterministic, using no random sampling. We present two methods of approximate inference. The first is very fast to compute and via examples we find that this approximation is ’practically sufficient’. By this expression we mean that the results obtained by this approximate method do not show any bias or dispersion effects that might affect decision making. The other approximation is an improved version of the first one, and via examples we demonstrate that the inferred posterior approximations of this improved version are ’practically exact’. By this expression we mean that one would have to run Markov chain Monte Carlo simulations for longer than is typically done to detect any indications of bias or dispersion error effects in the approximate results. The two methods of approximate inference can help to expand the scope of geostatistical models, for instance in the context of model choice, model assessment, and sampling design. The approximations take seconds of CPU time, in sharp contrast to overnight Markov chain Monte Carlo runs for solving these types of problems. Our approach to approximate inference could easily be part of standard softwares.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Implementing Approximate Bayesian Inference using Integrated Nested Laplace Approximation: a manual for the inla program

This manual describes the inla program, a new instrument which allows the user to easily perform approximate Bayesian inference using integrated nested Laplace approximation (INLA). We describe the set of models which can be solved by the inla program and provide a series of worked out examples illustrating its usage in details. Appendix A contains a reference manual for the inla program. This ...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Animal models and Integrated Nested Laplace Approximations

Animal models are generalized linear mixed model (GLMM) used in evolutionary biology and animal breeding to identify the genetic part of traits. Integrated Nested Laplace Approximation (INLA) is a methodology for making fast non-sampling based Bayesian inference for hierarchical Gaussian Markov models. In this paper we demonstrate that the INLA methodology can be used for many versions of Bayes...

متن کامل

NORGES TEKNISK - NATURVITENSKAPELIGE UNIVERSITET Bayesian computing with INLA : new features by Thiago

The INLA approach for approximate Bayesian inference for latent Gaussian models has been shown to give fast and accurate estimates of posterior marginals and also to be a valuable tool in practice via the R-package R-INLA. In this paper we formalize new developments in the R-INLA package and show how these features greatly extend the scope of models that can be analyzed by this interface. We al...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference for Survival Models

Bayesian analysis of time-to-event data, usually called survival analysis, has received increasing attention in the last years. In Cox-type models it allows to use information from the full likelihood instead of from a partial likelihood, so that the baseline hazard function and the model parameters can be jointly estimated. In general, Bayesian methods permit a full and exact posterior inferen...

متن کامل

Norges Teknisk-naturvitenskapelige Universitet Fakultet for Informasjonsteknologi, Matematikk Og Elektroteknikk Hovedoppgave

.........................................................................................................................I PREFACE........................................................................................................................... II TABLE OF CONTENTS................................................................................................... III

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006