Investigation of Somatic NKX2-5 Mutations in Chinese Children with Congenital Heart Disease
نویسندگان
چکیده
The purposes of this study are to investigate somatic NKX2-5 mutations in Chinese children with congenital heart disease (CHD) and assess the reliability of somatic mutation detection in formalin-fixed, paraffin-embedded (FFPE) tissues. The study cohort included frozen and FFPE cardiac tissues as well as blood samples from 85 Chinese children with CHD who had the cardiac operations. The right atrial appendage far from the diseased heart was used as normal control. Genomic DNA was isolated from cardiac tissues and blood samples using TIANamp Blood DNA kit. Two exons and exon-intron boundaries of NKX2-5 were amplified by polymerase chain reaction (PCR) and sequenced by dideoxynucleotide chain termination approach. The acquired sequences were aligned with GenBank sequences to identify the sequence variations. No somatic mutation in the NKX2-5 gene was observed in both frozen and FFPE cardiac tissues in 85 Chinese children with CHD. Nonetheless, a common single nucleotide polymorphism (SNP), c.63 A > G (E21E), was identified in all the three kinds of DNA samples with the same allele frequency 82.3%. Moreover, another common SNP c.606 G > C (L202L) was found in 2.3% of our patients. There were no significant differences in the allele frequencies of two SNPs between the cardiac diseased tissues and right atrial appendage (P > 0.05). PCR artefact as mutations was not found in the FFPE tissues stored for one year. Our findings demonstrate that somatic NKX2-5 mutations do not represent an important aetiologic pathway in Chinese children with congenital heart disease.
منابع مشابه
Somatic NKX2-5 mutations as a novel mechanism of disease in complex congenital heart disease.
NKX2-5 is a pivotal transcription factor in heart development. Previous studies on lymphocytic DNA provided evidence of familial NKX2-5 gene mutations in cardiac malformations. Common mutations are rare in unrelated families. We analysed, by direct sequencing, the gene encoding NKX2-5 in the diseased heart tissues of 68 patients with complex congenital heart disease, focussing particularly on a...
متن کاملFunctional dissection of sequence-specific NKX2-5 DNA binding domain mutations associated with human heart septation defects using a yeast-based system.
Human heart development requires an orderly coordination of transcriptional programs, with the homeodomain protein NKX2-5 being one of the key transcription factors required for the differentiation of mesodermal progenitor cells. Indeed, lack of Nkx2-5 in mice arrests heart development prior to looping, resulting in embryonic lethality. There are 28 germline NKX2-5 mutations identified in human...
متن کاملInvestigation of somatic NKX2-5 mutations in congenital heart disease
BACKGROUND Reports of somatic mutations found in hearts with cardiac septal defects have suggested that these mutations are aetiologic in pathologic cardiac development. However, the hearts in these reports had been fixed in formalin for over 22 years. Because of the profound implication of this finding, we attempted to replicate it using fresh frozen tissue obtained in the current era from 28 ...
متن کاملThe Rate of Addiction in Parents of Children with Congenital Heart Disease Compared with Healthy Children
BackgroundCongenital heart diseases (CHD) are the most common congenital anomaly in children and also the leading cause of mortality from congenital anomalies. Various factors including smoking, drinking alcohol and addiction play role in development of congenital heart diseases. This study was conducted with the aim of investigation of the prevalence of addiction in parents of children with co...
متن کاملPoint mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling.
Mutations in the Nkx2-5 gene are a main cause of congenital heart disease. Several studies have addressed the phenotypic consequences of disrupting the Nkx2-5 gene locus, although animal models to date failed to recapitulate the full spectrum of the human disease. Here, we describe a new Nkx2-5 point mutation murine model, akin to its human counterpart disease-generating mutation. Our model ful...
متن کامل