Human Nedd4 interacts with the human epithelial Na+ channel: WW3 but not WW1 binds to Na+-channel subunits.
نویسندگان
چکیده
The epithelial Na(+) channel (ENaC) regulates Na(+) absorption in epithelial tissues including the lung, colon and sweat gland, and in the distal nephrons of the kidney. When Na(+)-channel function is disrupted, salt and water homoeostasis is affected. The cytoplasmic regions of the Na(+)-channel subunits provide binding sites for other proteins to interact with and potentially regulate Na(+)-channel activity. Previously we showed that a proline-rich region of the alpha subunit of the Na(+) channel bound to a protein of 116 kDa from human lung cells. Here we report the identification of this protein as human Nedd4, a ubiquitin-protein ligase that binds to the Na(+)-channel subunits via its WW domains. Further, we show that WW domains 2, 3 and 4 of human Nedd4 bind to the alpha, beta and gamma Na(+)-channel subunits but not to a mutated beta subunit. In addition, when co-expressed in Xenopus oocytes, human Nedd4 down-regulates Na(+)-channel activity.
منابع مشابه
Data describing the solution structure of the WW3* domain from human Nedd4-1
The third WW domain (WW3*) of human Nedd4-1 (Neuronal precursor cell expressed developmentally down-regulated gene 4-1) interacts with the poly-proline (PY) motifs of the human epithelial Na+ channel (hENaC) subunits at micromolar affinity. This data supplements the article (Panwalkar et al., 2015) [1]. We describe the NMR experiments used to solve the solution structure of the WW3* domain. We ...
متن کاملAffinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel.
The epithelial Na+ channel (alphabetagammaENaC) regulates salt and fluid homeostasis and blood pressure. Each ENaC subunit contains a PY motif (PPXY) that binds to the WW domains of Nedd4, a Hect family ubiquitin ligase containing 3-4 WW domains and usually a C2 domain. It has been proposed that Nedd4-2, but not Nedd4-1, isoforms can bind to and suppress ENaC activity. Here we challenge this no...
متن کاملA single WW domain is the predominant mediator of the interaction between the human ubiquitin-protein ligase Nedd4 and the human epithelial sodium channel.
The activity of the epithelial Na(+) channel (ENaC) is required for the maintenance of salt and water balance in the body. Channel activity is regulated by the ubiquitin-protein ligase Nedd4 ['neuronal precursor cell-expressed developmentally down-regulated (gene 4)'] that interacts with the channel via its WW domains. Mutations in channel subunits that disrupt this interaction cause Liddle's s...
متن کاملUbiquitin-protein ligase WWP2 binds to and downregulates the epithelial Na(+) channel.
The epithelial Na(+) channel (ENaC) is a critical component of the pathway maintaining salt and water balance. The channel is regulated by members of the Nedd4 family of ubiquitin-protein ligases, which bind to channel subunits and catalyze channel internalization and degradation. ENaC mutations that abolish this interaction cause Liddle's syndrome, a genetic form of hypertension. Here, we test...
متن کاملRegulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2.
Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na(+) channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 345 Pt 3 شماره
صفحات -
تاریخ انتشار 2000