Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct.
نویسندگان
چکیده
We previously demonstrated that dietary K intake regulates the expression of Src family PTK, which plays an important role in controlling the expression of ROMK1 in plasma membrane (Wei Y, Bloom P, Lin D-H, Gu RM, and Wang WH. Am J Physiol Renal Physiol 281: F206-F212, 2001). In the present study, we used the immunofluorescence staining technique to demonstrate the presence of c-Src, a member of Src family PTK, in the thick ascending limb (TAL) and collecting duct. Confocal microscopy shows that c-Src is highly expressed in the renal cortex and outer medulla. Moreover, c-Src and ROMK are coexpressed in the same nephron segment. Also, the positive staining of c-Src is visible in tubules stained with Tamm-Horsfall glycoprotein or aquaporin-2. This suggests that c-Src is present in the TAL, cortical collecting duct (CCD), and outer medullary collecting duct (OMCD). To study the role of PTK in the regulation of ROMK membrane expression in the TAL and CCD, we carried out immunocytochemical staining with ROMK antibody in the CCD or TAL from rats on either a high-K (HK) or K-deficient (KD) diet. A sharp membrane staining of ROMK can be observed in the TAL from rats on both HK and KD diets. However, a clear plasma membrane staining can be observed only in the CCD from rats on a HK diet but not from those on a KD diet. Treatment of the CCD from rats on a HK diet with phenylarsine oxide (PAO) decreases the positive staining in the plasma/subapical membrane and increases the ROMK staining in the intracellular compartment. However, PAO treatment did not significantly alter the staining pattern of ROMK in the TAL. Moreover, the biotinylation technique has also confirmed that neither herbimycin A nor PAO has significantly changed the biotin-labeled ROMK2 in HEK293 cells transfected with ROMK2 and c-Src. We conclude that c-Src is expressed in the TAL, CCD, and OMCD and that stimulation of PTK increases the ROMK channels in the intracellular compartment but decreases them in the apical/subapical membrane in the CCD.
منابع مشابه
The protein tyrosine kinase-dependent pathway mediates the effect of K intake on renal K secretion.
Dietary K intake plays an important role in the regulation of K secretion: a decrease stimulates and an increase suppresses kidney expression of protein tyrosine kinase (PTK), which plays a role in regulating Kir1.1 (ROMK), which is responsible for K secretion in the cortical collecting duct (CCD) and K recycling in the thick ascending limb. Tyrosine phosphorylation of ROMK channels increases w...
متن کاملExpression of tetraspan protein CD63 activates protein-tyrosine kinase (PTK) and enhances the PTK-induced inhibition of ROMK channels.
In the present study, we tested the role of CD63 in regulating ROMK1 channels by protein-tyrosine kinase (PTK). Immunocytochemical staining shows that CD63 and receptor-linked tyrosine phosphatase alpha (RPTPalpha) are expressed in the cortical collecting duct and outer medulla collecting duct. Immunoprecipitation of tissue lysates from renal cortex and outer medulla or 293T cells transfected w...
متن کاملEffect of hydrogen peroxide on ROMK channels in the cortical collecting duct.
We used the patch-clamp technique to study the effect of H(2)O(2) on the apical ROMK-like small-conductance K (SK) channel in the cortical collecting duct (CCD). The addition of H(2)O(2) decreased the activity of the SK channels and the inhibitory effect of H(2)O(2) was larger in the CCD from rats on a K-deficient diet than that from rats on a normal-K or a high-K diet. However, application of ...
متن کاملRole of the NH2 terminus of the cloned renal K1 channel, ROMK1, in arachidonic acid-mediated inhibition
Macica, Carolyn M., Yinhai Yang, Kenneth Lerea, Steven C. Hebert, and WenHui Wang. Role of the NH2 terminus of the cloned renal K1 channel, ROMK1, in arachidonic acid-mediated inhibition. Am. J. Physiol. 274 (Renal Physiol. 43): F175–F181, 1997.—We have previously demonstrated that the ROMK channel maintains the property of arachidonic acid (AA) sensitivity observed originally in the native ATP...
متن کاملProtein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
The activity of apical K(+) channels in cortical collecting duct (CCD) is stimulated and inhibited by protein kinase A (PKA) and C (PKC), respectively. Direct interaction between phosphatidylinositol 4,5-bisphosphate (PIP(2)) and the cloned CCD K(+) channel, ROMK1, is critical for channel opening. We have found previously that phosphorylation of ROMK1 by PKA increases affinity of the channel fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 286 5 شماره
صفحات -
تاریخ انتشار 2004