Suspicious Behavior Detection in Debit Card Transactions using Data Mining: A Comparative Study using Hybrid Models

نویسندگان

  • Ehsan Saghehei
  • Azizollah Memariani
چکیده

The approach used in this paper is an implementation of a data mining process against real-life transactions of debit cards with the aim of detecting suspicious behavior. The framework designed for this purpose has been obtained through merging supervised and unsupervised models. First, due to unlabeled data, Twostep and Self-Organizing Map algorithms have been used in clustering the transactions. A C5.0 classification algorithm has been applied to evaluate supervised models and also to detect suspicious behaviors. An innovative plan has been designed to evaluate hybrid models and select the most appropriate model for the solution of the fraud detection problem. The evaluation of the models and the final analysis of the data took place in four stages. The appropriate hybrid model was selected from among 16 models. The results show a high ability of selected model in detecting suspicious behavior in transactions involving debit cards. Suspicious Behavior Detection in Debit Card Transactions using Data Mining: A Comparative Study using Hybrid Models

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes

With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...

متن کامل

Credit Card Fraud Detection using Data mining and Statistical Methods

Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...

متن کامل

Designing an Intelligent Intrusion Detection System in the Electronic Banking Industry Using Fuzzy Logic

One of the most important obstacles to using Internet banking is the lack of Stability of transactions and some misuse in the course of transactions it is financial. That is why preventing unauthorized access Crime detection is one of the major issues in financial institutions and banks. In this article, a system of intelligence has been designed that recognizes Suspicious and unusual behaviors...

متن کامل

Combination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions

As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...

متن کامل

Fraud Detection Technique in Credit Card Transactions using Convolutional Neural Network

Cashless transactions such as online transactions, credit card transactions, and mobile wallet are becoming more and more popular in financial transactions nowadays. With increased number of such cashless transaction, fraudulent transactions are also increasing. Fraud can be detected by analyzing spending behavior of customers (users) from previous transaction data. If any deviation is noticed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IRMJ

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2015