Uniformity of Congruences in Coherent Varieties
نویسندگان
چکیده
An algebra A is uniform if for each θ ∈ ConA, every two classes of θ have the same cardinality. It was shown by W. Taylor that coherent varieties need not be uniform (and vice versa). We show that every coherent variety having transferable congruences is uniform.
منابع مشابه
Commutator Theory for Uniformities
We investigate commutator operations on compatible uniformities. We present a commutator operation for uniformities in the congruence-modular case which extends the commutator on congruences, and explore its properties. Introduction The purpose of this paper is to generalize the commutator of congruences to a commutator of compatible uniformities. Commutator theory (on congruences) works best f...
متن کاملCommutator Theory for Compatible Uniformities
We investigate commutator operations on compatible uniformities. We define a commutator operation for uniformities in the congruence-modular case which extends the commutator on congruences, and explore its properties. Introduction The purpose of this paper is to generalize the commutator of congruences to a commutator of compatible uniformities. Commutator theory (on congruences) works best fo...
متن کاملK-theoretic Exceptional Collections at Roots of Unity
Using cyclotomic specializations of the equivariant K-theory with respect to a torus action we derive congruences for discrete invariants of exceptional objects in derived categories of coherent sheaves on a class of varieties that includes Grassmannians and smooth quadrics. For example, we prove that if X = P1 × . . . × Pk, where ni’s are powers of a fixed prime number p, then the rank of an e...
متن کاملVarieties Whose Tolerances Are Homomorphic Images of Their Congruences
The homomorphic image of a congruence is always a tolerance (relation) but, within a given variety, a tolerance is not necessarily obtained this way. By a Maltsev-like condition, we characterize varieties whose tolerances are homomorphic images of their congruences (TImC). As corollaries, we prove that the variety of semilattices, all varieties of lattices, and all varieties of unary algebras h...
متن کاملPrincipal and Syntactic Congruences in Congruence-distributive and Congruence-permutable Varieties
We give a new proof that a finitely generated congruence-distributive variety has finitely determined syntactic congruences (or equivalently, term finite principal congruences), and show that the same does not hold for finitely generated congruence-permutable varieties, even under the additional assumption that the variety is residually very finite. 2000 Mathematics subject classification: 08B10.
متن کامل