Oxide heterostructures for efficient solar cells.

نویسندگان

  • Elias Assmann
  • Peter Blaha
  • Robert Laskowski
  • Karsten Held
  • Satoshi Okamoto
  • Giorgio Sangiovanni
چکیده

We propose an unexplored class of absorbing materials for high-efficiency solar cells: heterostructures of transition-metal oxides. In particular, LaVO(3) grown on SrTiO(3) has a direct band gap ∼1.1  eV in the optimal range as well as an internal potential gradient, which can greatly help to separate the photogenerated electron-hole pairs. Furthermore, oxide heterostructures afford the flexibility to combine LaVO(3) with other materials such as LaFeO(3) in order to achieve even higher efficiencies with band-gap graded solar cells. We use density-functional theory to demonstrate these features.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced graphene oxide/silicon nanowire heterostructures with enhanced photoactivity and superior photoelectrochemical stability

Silicon nanowires (SiNWs) have been widely explored as light harvesting antenna in photocatalysts due to their ability to absorb broad solar spectrum, but are typically limited by poor photoelectrochemical stability. Here we report the synthesis of reduced graphene oxide-SiNW (rGO-SiNW) heterostructures to achieve greatly improved photocatalytic activity and stability. The SiNWs were synthesize...

متن کامل

Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells.

Recently, hybrid nanocomposites consisting of graphene/nanomaterial heterostructures have emerged as promising candidates for the fabrication of optoelectronic devices. In this work, we have employed a facile and in situ solution-based process to prepare zinc oxide/graphene quantum dots (ZnO/G QDs) in a hybrid structure. The prepared hybrid dots are composed of a ZnO core, with an average size ...

متن کامل

Effect of Seed Layer on the Morphology of ‎Zinc Oxide Nanorods as an Electron ‎Transport Layer in Polymer Solar Cells ‎

   Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...

متن کامل

Semiconductor heterostructures and optimization of light-trapping structures for efficient thin-film solar cells

Sub-wavelength photonic structures and nanoscale materials have the potential to greatly improve the efficiencies of solar cells by enabling maximum absorption of sunlight. Semiconductor heterostructures provide versatile opportunities for improving absorption of infrared radiation in photovoltaic devices, which accounts for half of the power in the solar spectrum. These ideas can be combined i...

متن کامل

SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells

CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 7  شماره 

صفحات  -

تاریخ انتشار 2013