A New Property of Laguerre Functions
نویسندگان
چکیده
Laguerre filters constitute an orthonormal basis for the Hilbert space, for this they are used in system identification and reduced-order modelling. In this paper a new property of Laguerre filters is introduced: it is shown that the system having as transfer function the sum of the first n + 1 functions has all the singular values equals each other. On the basis of this property a generalization of Laguerre filters is proposed.
منابع مشابه
Extended Jacobi and Laguerre Functions and their Applications
The aim of this paper is to introduce two new extensions of the Jacobi and Laguerre polynomials as the eigenfunctions of two non-classical Sturm-Liouville problems. We prove some important properties of these operators such as: These sets of functions are orthogonal with respect to a positive de nite inner product de ned over the compact intervals [-1, 1] and [0,1), respectively and also th...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملAn efficient approximate method for solution of the heat equation using Laguerre-Gaussians radial functions
In the present paper, a numerical method is considered for solving one-dimensional heat equation subject to both Neumann and Dirichlet initial boundary conditions. This method is a combination of collocation method and radial basis functions (RBFs). The operational matrix of derivative for Laguerre-Gaussians (LG) radial basis functions is used to reduce the problem to a set of algebraic equatio...
متن کاملLaguerre entire functions and the Lee-Yang property
Laguerre entire functions are the polynomials of a single complex variable possessing real nonpositive zeros only or their limits on compact subsets of C. These functions are employed to establish a property of isotropic (i.e., OðNÞ-invariant) probability measures on R , N 2 N. It is called the Lee–Yang property since, in the case N 1⁄4 1, it corresponds to the property of the partition functio...
متن کاملA Generalization of the Prolate Spheroidal Wave Functions
Many systems of orthogonal polynomials and functions are bases of a variety of function spaces, such as the Hermite and Laguerre functions which are orthogonal bases of L2(−∞,∞) and L2(0,∞), and the Jacobi polynomials which are an orthogonal basis of a weighted L2(−1, 1). The associated Legendre functions, and more generally, the spheroidal wave functions are also an orthogonal basis of L2(−1, ...
متن کامل