Correlation or Causality between Land Cover Patterns and the Urban Heat Island Effect? Evidence from Brisbane, Australia
نویسندگان
چکیده
Numerous studies have identified associations between the surface urban heat island (SUHI) effect (i.e., SUHI, hereinafter is referred to as UHI) and urban growth, particularly changes in land cover patterns. This research questions their causal links to answer a key policy question: If cities restrict urban expansion and encourage people to live within existing urban areas, will that help in controlling UHI? The question has been answered by estimating four models using data from Brisbane, Australia: Model 1—cross-sectional ordinary least square (OLS) regression—to examine the association between the UHI effect and land cover patterns in 2013; Model 2—cross-sectional geographically weighted regression (GWR)—to examine whether the outputs generated from Model 1 possess significant spatial variations; Model 3—longitudinal OLS—to examine whether changes in land cover patterns led to changes in UHI effects between 2004 and 2013; and Model 4—longitudinal GWR—to examine whether the outputs generated from Model 3 vary significantly over space. All estimations were controlled for potential confounding effects (e.g., population, employment and dwelling densities). Results from the cross-sectional OLS and GWR models were consistent with previous findings and showed that porosity is negatively associated with the UHI effect in 2013. In contrast, population density has a positive association. Results from the longitudinal OLS and GWR models confirm their causal linkages and showed that an increase in porosity level reduced the UHI effect, whereas an increase in population density increased the UHI effect. The findings suggest that even a containment of population growth within existing urban areas will lead to the UHI effect. However, this can be significantly minimized through proper land use planning, by creating a balance between urban and non-urban uses of existing urban areas.
منابع مشابه
Effect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area
Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...
متن کاملEffect of Vegetation Cover on Energy Consumption Optimization due to Reduction of Urban Heat Island intensity: Case of Tehran Metropolitan Area
Urbanization through rapid constructions, is the main cause of high heat absorption in urban centers. In addition, the accumulation of heat energy resulted by removal of vegetation cover, has contributed to formation of urban heat islands (UHIs). The spatial distribution of heat intensity in Tehran Metropolitan Area was studied, and the influence of land use and green cover were analyzed in the...
متن کاملRemote sensing for urban heat and cool islands evaluation in semi-arid areas
Cities are experiencing rapid population growth and consequently extensive urbanization. Land-use/land-cover change is one of the important elements worldwide, which significantly affect the environment. This study aims to describe the emergence of urban heat and cool islands as a result of changes in land-use/land-cover. Land surface temperature over a 32-year period in Isfahan city, Iran was ...
متن کاملThe Investigation of Variability of Heat Island Hazard According to Land Use and Land Cover Changesin Esfahan
Abstract Urban heat island (UHI) is one of the environmental phenomenon which has made difficult environmental conditions for citizen. This study aims to evaluate the spatial and locational variability of Esfahan urban heat island according to the role of land use. Thus an area about 190.2 square kilometers (km2) in Esfahan, as the microclimate, was studied. In order to analyze the relations...
متن کاملUrbanisation-Induced Land Cover Temperature Dynamics for Sustainable Future Urban Heat Island Mitigation
Urban land cover is one of the fastest global growing land cover types which permanently alters land surface properties and atmospheric interactions, often initiating an urban heat island effect. Urbanisation comprises a number of land cover changes within metropolitan regions. However, these complexities have been somewhat neglected in temperature analysis studies of the urban heat island effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016