Multiplier Ideals of Stratified Locally Conical Divisors

نویسندگان

  • Morihiko Saito
  • MORIHIKO SAITO
چکیده

We prove a formula for the multiplier ideals of stratified locally conical divisors, generalizing a formula of Mustata for a hyperplane arrangement with a reduced equation. We also give a partial converse to a result of Ein, Lazarsfeld, Smith, and Varolin on the relation between the jumping coefficients and the roots of the Bernstein-Sato polynomial.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplier ideals, b-function, and spectrum of a hyperplane singularity

We show a converse of a theorem of Ein, Lazarsfeld, Smith, and Varolin on the relation between the jumping coefficients and the roots of the Bernstein-Sato polynomial under certain hypotheses without which the assertion does not hold. For an explicit calculation we prove a formula for the multiplier ideals of stratified locally conical divisors, generalizing a formula of Mustata for a hyperplan...

متن کامل

2 00 4 MULTIPLIER IDEALS , b - FUNCTION , AND SPECTRUM

We show a converse of a theorem of Ein, Lazarsfeld, Smith, and Varolin on the relation between the jumping coefficients and the roots of the b-function (i.e. the BernsteinSato polynomial) under certain hypotheses without which the assertion does not hold. For an explicit calculation we prove a formula for the multiplier ideals of stratified locally conical divisors, generalizing a formula of Mu...

متن کامل

MULTIPLIER IDEALS, b-FUNCTION, AND SPECTRUM OF A HYPERSURFACE SINGULARITY

We prove that certain roots of the Bernstein-Sato polynomial (i.e. b-function) are jumping coefficients up to a sign, showing a partial converse of a theorem of L. Ein, R. Lazarsfeld, K.E. Smith, and D. Varolin. We also prove that certain roots are determined by a filtration on the Milnor cohomology, generalizing a theorem of B. Malgrange in the isolated singularity case. This implies a certain...

متن کامل

A Characterization of Nef and Good Divisors by Asymptotic Multiplier Ideals

A characterization of nef and good divisors is given: a divisor D on a smooth complex projective variety is nef and good if and only if the asymptotic multiplier ideals of sufficiently high multiples of e(D)·D are trivial, where e(D) denotes the exponent of the divisor D. Some results of the same kind are proved in the analytic setting.

متن کامل

F -thresholds of Hypersurfaces

In characteristic zero one can define invariants of singularities using all divisors over the ambient variety. A key result that makes these invariants computable says that they can be determined by the divisors on a resolution of singularities. For example, if a is a sheaf of ideals on a nonsingular variety, then to every nonnegative real number λ one associates the multiplier ideal J (a). The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004