Isostatic Recovery and the Strain Rate Dependent Viscosity of the Earths Mantle
نویسنده
چکیده
This paper is concerned with the interpretation of isostatic recovery data in terms of the flow properties of the earth's mantle. A hydrodynamic analysis is first presented that allows straightforward calculation of the relaxation time for isostatic recovery within a mantle in which the viscosity varies continuously with depth. However, it transpires that no curve of this type (i.e., choice of a reference viscosity and a rate of change of viscosity with depth) can of itself adequately explain the available observational data from the Fennoscandian and Laurentide ice sheets and the pluvial Lake Bonneville. Proceeding onward it is then demonstrated that the strain rates within such flows are in fact greater than the critical strain rate envisaged by Weertman (1970) in his theoretical rheological model of the mantle. Below this critical value, diffusion creep is the dominant flow process, and the flow can be modeled by a Newtonian viscosity. But above this value, dislocation glide takes over, and the viscosity exhibits a decrease with increasing strain rate. This feature is then incorporated into the theoretical model, and the isostatic recovery data are interpreted in such a way as to provide experimental values of the strain rate dependent viscosity that can be compared with the values in Weertman's rheological model. It is demonstrated that the data become most self-consistent and exhibit the most satisfactory agreement with Weertman's model when the increase of mantle viscosity with depth is given roughly by exp (5 X 10-4z), where z is the depth in kilometers. Thus in addition, the analysis would appear to provide some verification of Weertman's model of the mantle flow properties. It is further demonstrated that the much larger increase of viscosity with depth predicted by McConnell (1968) and others from previous analyses of isostatic recovery data is an artifice induced by the nature of such flows in which the strain rate decreases with depth; this led to an apparent increase of viscosity that is much larger than the actual variation.
منابع مشابه
Author's personal copy Rheological structure of the mantle of a super-Earth: Some insights from mineral physics
The rheological properties of the mantle of super-Earths have important influences on their orbital and thermal evolution. Mineral physics observations are reviewed to obtain some insights into the rheological properties of deep mantles of these planets where pressure can be as high as 1 TPa. It is shown that, in contrast to a conventional view that the viscosity of a solid increases with press...
متن کاملTowards adjoint-based inversion of time-dependent mantle convection with nonlinear viscosity
S U M M A R Y We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature-dependent and strain-rate-dependent viscosity, we formulate the inversion as a PDE-c...
متن کاملGlacial isostatic adjustment and the radial viscosity profile from inverse modeling
[1] A formal inverse procedure is used to infer radial mantle viscosity profiles from several observations related to the glacial isostatic adjustment process. The data sets consist of Late Pleistocene and Holocene sea level data from Scandinavia, the Barents Sea, Central Europe, Canada, and the far field, as well as observations of changes in the Earth’s rotation and gravitational field, and p...
متن کاملOn the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation, and plate-driving forces
S U M M A R Y Global circulation models are analysed using a temperature and strain-rate dependent rheology in order to refine previous estimates of the nature of mantle flow and plate driving forces. Based on temperature inferred from a tectonic model and seismic tomography, the suboceanic viscosity is lower than underneath continents by ∼ one order of magnitude. If net-rotations of the lithos...
متن کاملRayleigh-Taylor instability, lithospheric dynamics, surface topography at convergent mountain belts, and gravity anomalies
[1] Surface topography and associated gravity anomalies above a layer resembling continental lithosphere, whose mantle part is gravitationally unstable, depend strongly on the ratio of viscosities of the lower-density crustal part to that of the mantle part. For linear stability analysis, growth rates of Rayleigh-Taylor instabilities depend largely on the wave number, or wavelength, of the pert...
متن کامل