Hybrid Quantum Annealing for Clustering Problems
نویسندگان
چکیده
We develop a hybrid type of quantum annealing in which we control temperature and quantum field simultaneously. We study the efficiency of proposed quantum annealing and find a good schedule of changing thermal fluctuation and quantum fluctuation. In this paper, we focus on clustering problems which are important topics in information science and engineering. We obtain the better solution of the clustering problem than the standard simulated annealing by proposed quantum annealing.
منابع مشابه
Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کاملA Hybrid Quantum-Classical Approach to Solving Scheduling Problems
An effective approach to solving complex problems is to decompose them and integrate dedicated solvers for those subproblems. We introduce a hybrid decomposition that incorporates: (1) a quantum annealer that samples from the configuration space of a relaxed problem to obtain strong candidate solutions, and (2) a classical processor that maintains a global search tree and enforces constraints o...
متن کاملA Hybrid Quantum-Classical Paradigm to Mitigate Embedding Costs in Quantum Annealing
Despite rapid recent progress towards the development of quantum computers capable of providing computational advantages over classical computers, it seems likely that such computers will, initially at least, be required to run in a hybrid quantum-classical regime. This realisation has led to interest in hybrid quantum-classical algorithms allowing, for example, quantum computers to solve large...
متن کاملQuantum Annealing for Clustering
This paper studies quantum annealing (QA) for clustering, which can be seen as an extension of simulated annealing (SA). We derive a QA algorithm for clustering and propose an annealing schedule, which is crucial in practice. Experiments show the proposed QA algorithm finds better clustering assignments than SA. Furthermore, QA is as easy as SA to implement.
متن کاملQuantum Simulated Annealing
We develop a quantum algorithm to solve combinatorial optimization problems through quantum simulation of a classical annealing process. Our algorithm combines techniques from quantum walks, quantum phase estimation, and quantum Zeno effect. It can be viewed as a quantum analogue of the discrete-time Markov chain Monte Carlo implementation of classical simulated annealing. Our implementation re...
متن کامل