STRUCTURE AND EVOLUTION OF THE rDNA INTERNAL TRANSCRIBED SPACER (ITS) REGION 2 IN THE SYMBIOTIC DINOFLAGELLATES (SYMBIODINIUM, DINOPHYTA)
نویسندگان
چکیده
Internal transcribed spacer (ITS) regions of the eukaryotic rDNA operon are integral to the correct processing and maturation of rRNAs. To further understand the evolution of this region, we elucidated the secondary structure of ITS2 from representatives of the eight divergent clades of Symbiodinium Freud., a large genus of dinoflagellate endosymbionts occurring in association with zooxanthellate marine protists and invertebrates. Symbiodinium ITS2 molecules folded into one of two distinct conformations. One conformation, the ‘‘four-fingered hand’’ model, has been described from a wide variety of eukaryotes, including freeliving dinoflagellates. A monophyletic assemblage comprising several Symbiodinium clades shared an unusual conformation, a five-stem model previously known only from drosopholids, indicating that it arose in the common ancestor to this ‘‘superclade’’ of Symbiodinium. Several conserved features were identified in the ITS2 secondary structures, including a pyrimidine–pyrimidine bulge and a highly conserved 11 bp sequence motif, that correspond to known processing sites in other eukaryotes. Lastly, the ITS2 structural data are discussed in the context of Symbiodinium evolution, phylogenetics, and ecology.
منابع مشابه
Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs
A community ecology approach to the study of the most common group of zooxanthellae, dinoflagellates in the genus Symbiodinium, was applied to symbiotic invertebrate assemblages on coral reefs in the western Caribbean, off the Yucatan peninsula (Puerto Morelos, Mexico) and over 1000 km away in the northeastern Caribbean, at Lee Stocking Island, Bahamas. Sequence differences and intragenomic var...
متن کاملMeasuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates.
Molecular approaches have revolutionized our ability to study the ecology and evolution of micro-organisms. Among the most widely used genetic markers for these studies are genes and spacers of the rDNA operon. However, the presence of intragenomic rDNA variation, especially among eukaryotes, can potentially confound estimates of microbial diversity. To test this hypothesis, bacterially cloned ...
متن کاملImproved Resolution of Reef-Coral Endosymbiont (Symbiodinium) Species Diversity, Ecology, and Evolution through psbA Non-Coding Region Genotyping
Ribosomal DNA sequence data abounds from numerous studies on the dinoflagellate endosymbionts of corals, and yet the multi-copy nature and intragenomic variability of rRNA genes and spacers confound interpretations of symbiont diversity and ecology. Making consistent sense of extensive sequence variation in a meaningful ecological and evolutionary context would benefit from the application of a...
متن کاملComparative Phylogenetic Perspectives on the Evolutionary Relationships in the Brine Shrimp Artemia Leach, 1819 (Crustacea: Anostraca) Based on Secondary Structure of ITS1 Gene
This is the first study on phylogenetic relationships in the genus Artemia Leach, 1819 using the pattern and sequence of secondary structures of internal transcribed spacer 1 (ITS1). Significant intraspecific variation in the secondary structure of ITS1 rRNA was found in Artemia tibetiana. In the phylogenetic tree based on joined primary and secondary structure sequences, Artemia urmiana and pa...
متن کاملSecondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates.
Secondary structure models of the 5.8S rRNA and both internal transcribed spacers (ITS1 and ITS2) are proposed for Calciodinelloideae (Peridiniaceae) and are also plausible for other dinoflagellates. The secondary structure of the 5.8S rRNA corresponds to previously developed models, with two internal paired regions and at least one 5.8S rRNA-28S rRNA interaction. A general secondary structure ...
متن کامل