Vasoactive intestinal peptide potentiates and directly stimulates catecholamine secretion from rat adrenal chromaffin cells.
نویسندگان
چکیده
The actions of vasoactive intestinal polypeptide (VIP) on catecholamine secretion and changes in [Ca2+]i in single rat chromaffin cells were studied using amperometry and Indo-1. Application of VIP prior to acetylcholine (ACh) or co-application of VIP and ACh enhanced secretion by 94% and 153% respectively, compared to ACh alone. [Ca2+]i was increased by 17% when VIP was preapplied and by 73% upon co-application. Exposure to VIP before stimulation with 60 mM K+ enhanced secretion by 68%, but not [Ca2+]i. VIP application prior to DMPP and nicotine had no effect on [Ca2+]i, but increased [Ca2+]i signals to muscarine by 18%. VIP co-application potentiated only [Ca2+]i responses to muscarine, by 28%. The effect of VIP on muscarine-induced [Ca2+]i signals was mimicked by 8-Br-cAMP, and both were blocked by H-89, a protein kinase A inhibitor. Long-lasting increases in secretion accompanied by a sustained rise in [Ca2+]i to VIP alone were seen in 55% of cells. Removal of Ca2+ or addition of La3+ inhibited both responses, while L-, N- and P-type Ca2+ channel blockers were ineffective. SK&F 96365 inhibited VIP-induced secretion completely and rises in [Ca2+]i by 75%. Neither 8-Br-cAMP nor 8-Br-cGMP evoked responses similar to VIP alone. Thus in rat chromaffin cells, VIP acts both directly as a neurotransmitter in provoking sustained catecholamine secretion in a cAMP-independent manner, and also by enhancing ACh-induced secretion, via a cAMP-dependent action involving muscarinic receptors.
منابع مشابه
Vasoactive intestinal polypeptide- and pituitary adenylate cyclase activating polypeptide-mediated control of catecholamine release from chromaffin tissue in the rainbow trout, Oncorhynchus mykiss.
The aim of the present investigation was to assess the relative contributions of cholinergic (acetylcholine) and non-cholinergic vasoactive intestinal polypeptide (VIP), and pituitary adenylate cyclase activating polypeptide (PACAP) neurotransmitters in the neuronal control of catecholamine secretion from the chromaffin tissue lining the posterior cardinal vein of the rainbow trout (Oncorhynchu...
متن کاملPituitary adenylate cyclase-activating polypeptide, vasoactive intestinal polypeptide and their receptors: distribution and involvement in the secretion of Podarcis sicula adrenal gland.
Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are regulatory neuropeptides of the hypothalamus-hypophyseal-adrenal axis, acting via the common receptors VPAC(1) and VPAC(2) and the selective PACAP receptor PAC(1). In the adrenal glands of the Italian wall lizard, Podarcis sicula, the presence of VIP in chromaffin cells, and the VIP-stimul...
متن کاملChromostatin inhibits catecholamine secretion in adrenal chromaffin cells by activating a protein phosphatase.
Chromostatin is a 20-residue peptide derived from chromogranin A (CGA), the major soluble component of secretory granules in adrenal medullary chromaffin cells. One known biological function of chromostatin is to inhibit the secretagogue-evoked catecholamine secretion from chromaffin cells. Putative receptors are present on the chromaffin-cell plasma membrane, and the activation of such recepto...
متن کاملImmunohistochemical features of substance P-immunoreactive chromaffin cells and nerve fibers in the rat adrenal gland.
The distribution of substance P (SP) immunoreactivity and the colocalization of SP with other bioactive substances in chromaffin cells and nerve fibers were investigated in the rat adrenal gland at the light microscopic level. In the capsule and cortex, SP immunoreactivity was seen in some nerve fibers around blood vessels and in thick nerve bundles passing through the cortex directly into the ...
متن کاملEnhancement of catecholamine release from PC12 cells by the traditional Japanese medicine, rikkunshito
BACKGROUND Rikkunshito is a traditional Japanese herbal medicine that is used to treat appetite loss associated with cancer and other disorders. The formulation contains various constituents that influence cell signaling, and rikkunshito may accordingly affect human homeostasis through multiple regulatory pathways, including those governed by the endocrine system. We investigated the actions of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 809 1 شماره
صفحات -
تاریخ انتشار 1998