Overproduction of the CFTR R domain leads to increased levels of asialoGM1 and increased Pseudomonas aeruginosa binding by epithelial cells.

نویسندگان

  • R Bryan
  • D Kube
  • A Perez
  • P Davis
  • A Prince
چکیده

Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), particularly the common DeltaF508 mutation, have been associated with alterations in glycolipid sialylation and the availability of receptors for Pseudomonas aeruginosa binding. The surface properties of 9HTEo- tracheal epithelial cell lines transfected with plasmids that overproduce the regulatory (R) domain of CFTR (pCEP-R) and lack cyclic adenosine monophosphate-stimulated Cl- conductance were compared with control cell lines with normal CFTR function. There was increased bacterial adherence to the mutant cell lines with abnormal CFTR activity. Cell lines with overexpression of the R domain had surface properties similar to cells expressing the common DeltaF508 mutation in CF. P. aeruginosa adherence correlated with the increased numbers of asialoGM1 residues available on the surface of the epithelial cells with altered CFTR function; and antibody to asialoGM1, a P. aeruginosa pilin receptor, was able to compete with piliated bacteria for epithelial binding sites. The pCEP-R cell lines with increased bacterial binding were also associated with increased production of interleukin-8 in response to adherent P. aeruginosa compared with cells transfected with the empty vector pCEP. P. aeruginosa pil mutants that lack the adhesin specific for the asialoGM1 receptor did not discriminate between epithelial cells with normal or deficient CFTR function. These results confirm a direct relationship between aberrant CFTR function and increased levels of apical asialoGM1, and support the role of these asialylated glycolipids as P. aeruginosa receptors that initiate an epithelial proinflammatory response in response to bacterial ligands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung.

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR i...

متن کامل

Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition.

The high incidence of colonization of the cystic fibrosis (CF) airway with Pseudomonas aeruginosa has been attributed to several mechanisms including increased numbers of asialoglycolipid receptors, which may be further increased by exposure to the bacterial exoproduct, neuraminidase. This study examined whether the adherence of P. aeruginosa to fresh CF respiratory epithelial cells can be redu...

متن کامل

Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells.

PMN-dominated airway inflammation is a major component of cystic fibrosis (CF) lung disease. Epithelial cells respond to organisms such as Pseudomonas aeruginosa, the major pathogen in CF, by expressing the leukocyte chemokine IL-8. Experiments were performed using several different types of respiratory epithelial cells that demonstrate that ligation of ceramide-associated receptors on epitheli...

متن کامل

Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung.

The CFTR gene encodes a transmembrane conductance regulator, which is dysfunctional in patients with cystic fibrosis (CF). The mechanism by which defective CFTR (CF transmembrane conductance regulator) leads to undersialylation of plasma membrane glycoconjugates, which in turn promote lung pathology and colonization with Pseudomonas aeruginosa causing lethal bacterial infections in CF, is not k...

متن کامل

Hypoxia increases corneal cell expression of CFTR leading to increased Pseudomonas aeruginosa binding, internalization, and initiation of inflammation.

PURPOSE To investigate the effect of hypoxia-induced molecular responses of corneal epithelial cells on the surface of rabbit and human corneas and corneal cells in culture on interactions with Pseudomonas aeruginosa that may underlie increased susceptibility to keratitis. METHODS Organ cultures of rabbit and human corneal tissue, primary rabbit and human corneal cells, and transformed human ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 1998