The Effects of Light, Temperature, and Nutrition on Growth and Pigment Accumulation of Three Dunaliella salina Strains Isolated from Saline Soil
نویسندگان
چکیده
BACKGROUND Developing algal industries in saline-alkali areas is necessary. However, suitable strains and optimal production conditions must be studied before widespread commercial use. OBJECTIVES The effects of light, temperature, KNO3, and CO(NH2)2 on beta-carotene and biomass accumulation were compared and evaluated in order to provide scientific guidance for commercial algal production in northeastern Thailand. MATERIALS AND METHODS An orthogonal design was used for evaluating optimal conditions for the algal production of three candidate Dunaliella salina strains (KU XI, KU 10 and KU 31) which were isolated from saline soils and cultured in the column photobioreactor. RESULTS The optimal light and temperature for algae growth were 135.3 μmol m(-2) s(-1) and 22°C, while the conditions of 245.6 μmol m(-2) s(-1) and 22°C induced the highest level of beta-carotene production (117.99 mg L(-1)). The optimal concentrations of KNO3, CO(NH2)2, and NaHCO3 for algae growth were 0.5 g L(-1), 0.36 g L(-1), and 1.5 g L(-1), respectively, while 0, 0.12 g L(-1) and 1.5 g L(-1) were best suited for beta-carotene accumulation. The highest beta-carotene rate per cell appeared with the highest light intensity (12.21 pg) and lowest temperature (12.47 pg), and the lowest total beta-carotene content appeared at the lowest temperature (15°C). There was not a significant difference in biomass accumulation among the three Dunaliella strains; however, the beta-carotene accumulation of KU XI was higher than that of the other two strains. CONCLUSIONS Light and temperature were both relevant factors that contributed to the growth and beta-carotene accumulation of the three D. salina strains, and NaHCO3 had significantly positive effects on growth. The degree of impact of the different factors on cell growth was temperature > NaHCO3 > light intensity > KNO3 > CO (NH2)2 > strains; the impact on beta-carotene accumulation was temperature > light intensity > KNO3 > CO (NH2)2 > strains > NaHCO3.
منابع مشابه
Growth and pigment development of Dunaliella salina Teod. in response to ammonium nitrate nutrition
The microalgae, Dunaliella salina was isolated from Maharlu Salt Lake, south east of Shiraz, Iran. The isolated strain was identified by both morphological and physiological markers. The complete ITS region (ITS1 + ITS2) including the 5.8S rDNA gene used as molecular marker confirmed our identification. Growth and cell proliferation, total chlorophyll and carotenoid contents were determined in ...
متن کاملEFFECTS OF SALT AND IRRADIANCE STRESS ON PHOTOSYNTHETIC PIGMENTS AND PROTEINS IN DUNALIELLA SALINA TEODORESCO
The aim of this study was to examine the effects of salinity and light intensity on the chlorophylls, ?-carotene and protein contents in Dunaliella salina Teod. The algae were grown in inorganic medium containing 0, 0.9, 1.8 (control), 2.6 and 3.5 M NaCl under three illumination regimens [4500 (control), 9000 and 11000 Lux]. The results showed that most electrophoresis protein bands were separa...
متن کاملEffect of SiO2 Nanoparticles on Chlorophyll, Carotenoid and Growth of Green Micro-Algae Dunaliella salina
As a rapidly-evolving global technology, nanotechnology has presumably brought drastic changes to our lives in the past two decades using engineered nanoparticles, whose penetration into industrial and non-industrial wastewater requires examination of their probable effects in aquatic ecosystems. The main objective of this work is to study the toxicological and biological effects of nanomateria...
متن کاملLight intensity effects on some molecular and biochemical characteristics of Dunaliella salina. Leila Zarandi-Miandoab1,3, Mohammad-Amin Hejazi2*, Mohammad-Bager Bagherieh-Najjar1, Nader Chaparzadeh3
To gain a better understanding of molecular and biochemical events involved in light intensity adaptations of Dunaliella salina, we studied the expression of phytoen synthase (psy) gene; pigments, carbohydrates, proteins and lipids accumulation under two light intensities. The cells were pre-cultured under 50 µmol photon m-2s-1 light intensity and then transferred to two different light intensi...
متن کاملEffects of Salinity and Light on Growth of Dunaliella Isolates
Dunaliella salina, halotorelant unicellular green algae, is the main natural source of beta-carotene. Several strains of local Dunaliella salina were isolated. Together with Dunaliella bardawil DCCBC 15 and Dunaliella salina CCAP 19/18, the strains were examined for their growth under the effects of salinities (1 M, 1.5 M and 2 M) and light intensities (50, 100 and 150 μmol photon/m/s). The res...
متن کامل