The Influence of Thin Bonding Layers on the Leaky Waves at Liquid-Solid Interfaces

نویسندگان

  • A. H. Nayfeh
  • D. E. Chimenti
  • Laszlo Adler
  • R. L. Crane
  • E. Chimenti
چکیده

This paper presents theoretical and experimental results on the problem of bounded acoustic beam reflection at the Rayleigh angle from a fluid-solid interface which is loaded by a thin solid layer. The theoretical development exploits the framework of existing theory to yield a simple, analytic model which is reasonably accurate for thin layers. It is shown that the influence of the layer is contained entirely in the dispersive Rayleigh wavespeed and the thickness-dependent displacement parameter ~s• Measurements of the reflected acoustic field amplitude have been performed on several samples of stainless steel loaded with a thin copper layer. We have found reasonably good agreement between the theoretical model calculations and experimental measurements for ratios of the layer thickness to the Rayleigh wavelength as large as 0.3. Beyond this value, some disparity is observed, particularly in the calculation of the thickness-dependent Rayleigh wavespeed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wettability of Liquid Mixtures on Porous Silica and Black Soot Layers

Sophisticated manipulation of surface roughness and solid surface energy are widely used to design super-hydrophobic layers. In this work, we designed highly porous silica layer with contact angle (CA) of 145°, and its robustness was promoted with thermal treatment. Wettability of coated layer is studied with CA measurement for different liquid surface tensions using diluted organi...

متن کامل

Response of Two Temperatures on Wave Propagation in Micropolar Thermoelastic Materials with One Relaxation Time Bordered with Layers or Half Spaces of Inviscid Liquid

The present study is concerned with the propagation of Lamb waves in a homogeneous isotropic thermoelastic micropolar solid with two temperatures bordered with layers or half spaces of inviscid liquid subjected to stress free boundary conditions. The generalized theory of thermoelasticity developed by Lord and Shulman has been used to investigate the problem. The secular equations for symmetric...

متن کامل

Inhomogeneous plane-wave scattering and mode stimulation on periodic rough surfaces

Medium vibration properties to characterize interface layers and quality of bonding can be examined by an ordinary approach using homogeneous waves or by a more general inhomogeneous ~or complex harmonic! wave scattering technique. It is known that only particular inhomogeneous plane waves can stimulate eigenvibrations of a given structure, and not the homogeneous wave. The reflection and trans...

متن کامل

Detection of Leaky-rayleigh Wa Yes at Air-solid Interfaces by Laser Interferometry

Leaky-Rayleigh waves have been studied extensively at liquid-solid interface in the last 30 years [1-4]. Both leaky-Rayleigh and leaky-Lamb waves have found many application in Nondestructive Evaluation, e.g. surface defect characterization, etc [5,6]. Because of the difficulties associated with ultrasonic wave generation and detection in air in the megaHerz region air coupled non destructive e...

متن کامل

An Analytic Study on the Dispersion of Love Wave Propagation in Double Layers Lying Over Inhomogeneous Half-Space

In this work, attempts are made to study the dispersion of Love waves in dry sandy layer sandwiched between fiber reinforced layer and inhomogeneous half space.Inhomogeneity in half space associated with density and rigidity and considered in exponential form. Displacement components for fiber reinforced layer, dry sandy layer and inhomogeneous half-space have been obtained by using method of s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017